• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه
  • ورود / ثبت نام

عنوان
Multimodal Multisensor Attention Modelling

پدید آورنده
Taheri, Mohammad Hossein

موضوع
Artificial intelligence,Educational psychology,Educational technology,Special education

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TL56610

زبان اثر

زبان متن نوشتاري يا گفتاري و مانند آن
انگلیسی

عنوان و نام پديدآور

عنوان اصلي
Multimodal Multisensor Attention Modelling
نام عام مواد
[Thesis]
نام نخستين پديدآور
Taheri, Mohammad Hossein
نام ساير پديدآوران
Sherkat, Nasser

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
Nottingham Trent University (United Kingdom)
تاریخ نشرو بخش و غیره
2020

يادداشت کلی

متن يادداشت
200 p.

یادداشتهای مربوط به پایان نامه ها

جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
Nottingham Trent University (United Kingdom)
امتياز متن
2020

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
Introduction: Sustaining attention is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to track student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time Multimodal Multisensor data labeled by objective performance outcomes to track the attention of students. Method: The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal Multisensor data were collected while they participated in a Continuous Performance Test (CPT). Eyegaze, electroencephalogram, body pose, and interaction data were used to create a model of student attention through objective labeling from the Continuous Performance Test outcomes. To achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including High-Level handpicked Compound Features (HLCF). Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Research questions: RQ1: Can we create a model of attention for PMLD/CP students using the CPT? RQ2: What are the main correlations found in the CPT outcomes and the Multimodal Multisensor data? Results: Overall, the random forest classification approach achieved the best classification results. Using random forest, 84.8% classification for attention and 65.4% accuracy for inattention were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. Incorporating person-specific data improved the classification outcome, compared to being participant neutral. We found that using HighLevel handpicked Compound Features (HLCF) can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of attention and inattention was shown to be eye-gaze. We have shown that we can accurately predict the level of attention of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation, or reliant on a single mode of sensor input. In total, 2475 separate correlation tests were carried over 55 data points using Pearson's correlation coefficient. Data points from the SDT, CPT outcomes measures, Multimodal Multisensor features, and participant characteristics were assessed longitudinally for cross-correlation significance. A strong positive correlation was found between participant ability to maintain sustained and selective attention in the CPT to their academic progress in school (d'), P < .01. Participants who showed more inhibition in tests had progressed further in their academic assessments P < .01. The Seek-X type CPT also showed specific physiological characteristics, including body movement range and eye-gaze that were significant in P scales such as 'Reading' and 'Listening' P < .05. We found that participant bias was overall liberal B"D < 0. Participants iii showed no significant bias change during the sessions, and we found no significant correlation between bias (B"D) and sensitivity (d'). Conclusion: An approach to labeling Multimodal Multisensor data to train machine-learning algorithms to track the attention of students with profound and multiple disabilities has been presented. We posit that this approach can overcome the variation in observer inter-rater reliability when using standardized scales in tracking the emotional expression of students with such profound disabilities. The accuracy of our approach increases with multiple modes of sensor input, and our method is robust to sensor occlusion and fall-out. Multiple sources of sensor input are provided, to accommodate a wide variety of users and their needs. Our model can reliably track the attention of students with profound disabilities, regardless of the sensors available. A system incorporating this model can help teachers design personalized interventions for a very heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. This approach could be used to identify those with the greatest learning challenges, to guarantee that all students are supported to reach their full potential.

اصطلاحهای موضوعی کنترل نشده

اصطلاح موضوعی
Artificial intelligence
اصطلاح موضوعی
Educational psychology
اصطلاح موضوعی
Educational technology
اصطلاح موضوعی
Special education

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Taheri, Mohammad Hossein

نام شخص - ( مسئولیت معنوی درجه دوم )

مستند نام اشخاص تاييد نشده
Sherkat, Nasser

شناسه افزوده (تنالگان)

مستند نام تنالگان تاييد نشده
Nottingham Trent University (United Kingdom)

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال