Algorithm for Choosing Best Shape Parameter for Partial Differential Equation Problems via Inverse Multiquadric Radial Basis Function
نام عام مواد
[Thesis]
نام نخستين پديدآور
Sulaiman, Muritala Hambali
نام ساير پديدآوران
Issa, K.
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Kwara State University (Nigeria)
تاریخ نشرو بخش و غیره
2019
يادداشت کلی
متن يادداشت
53 p.
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
M.S.
کسي که مدرک را اعطا کرده
Kwara State University (Nigeria)
امتياز متن
2019
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Radial Basis Function (RBF) is a real valued function whose value rests solely only on the distance from the origin or alternatively on the distance from some other points called a center, so that, sums of radial basis functions are typically used to approximate given functions or dierential equations. Radial Basis Function (RBFs) approximation has the ability to give accurate function approximation for large data site at Scattered node points which give smooth solutions for a given number of node points; especially when the Radial Basis Functions are scaled to the nearly at and the shape parameter is wisely chosen. In this research work, Inverse multiquadric (IMQ) function is considered among other RBFs strategies to solve some selected partial dierential equations (PDEs). The focus was on the choice of shape parameters, which needed to be chosen wisely. An algorithms to perform a series of interpolation experiments by varying the interval of the shape parameters and consequently, select the best shape parameter, was written and implemented in matlab. The interpolant for some selected problems and the corresponding root means square errors (RMSEs) were plotted and the tables of RMSEs were tabulated.
اصطلاحهای موضوعی کنترل نشده
اصطلاح موضوعی
Mathematics
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )