• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه
  • ورود / ثبت نام

عنوان
Modeling, Designing and Applying Machine Learning Algorithms for Driver Drowsiness Detection

پدید آورنده
Babaeian, Mohsen

موضوع
Biomedical engineering,Electrical engineering,Engineering

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TL52626

زبان اثر

زبان متن نوشتاري يا گفتاري و مانند آن
انگلیسی

عنوان و نام پديدآور

عنوان اصلي
Modeling, Designing and Applying Machine Learning Algorithms for Driver Drowsiness Detection
نام عام مواد
[Thesis]
نام نخستين پديدآور
Babaeian, Mohsen
نام ساير پديدآوران
Mozumdar, Mohammad

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
The Claremont Graduate University
تاریخ نشرو بخش و غیره
2020

يادداشت کلی

متن يادداشت
104 p.

یادداشتهای مربوط به پایان نامه ها

جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
The Claremont Graduate University
امتياز متن
2020

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
Driver drowsiness has been a significant hazard resulting in various traffic accidents. Therefore, monitoring this condition is crucial not only in alerting drivers, but also in avoiding fatal accidents. Many research studies propose new systems to reduce the number of drowsiness-related injuries and fatalities. The ultimate goal for a drowsiness detection system is to detect the drowsiness on time and minimize the system or environment errors to avoid false readings, such as studying physiological signal processing patterns. These potentially life-saving systems must operate in a timely manner with the highest precision. Researchers proposed various methods based on driving pattern changes, driver body position, and physiological signal processing patterns. There is a focus on human physiological signals, specifically the electrical signals from the heart and brain. In this study, we are presenting an alternative method to determine and quantify the driver drowsiness levels using a physiological signal that was collected in a non-intrusive method. This methodology utilizes heart rate variation (HRV), electrocardiogram (ECG), and machine learning for drowsiness detection. It is apparent that a driver's drowsiness is associated with an immediate change in heart rate, and due to the fact that Electrocardiogram (ECG) is used to detect an accurate heart rate. We used it as a parameter in the proposed design where it consists of a non-contact ECG sensor as an input source and a circuit with a two-stage amplifier to improve the ECG signal's strength and filters to minimize noise. An approximate maximum peak ECG output voltage of 2.8V was obtained in LT Spice, and the resulting ECG output is sufficient enough to detect a driver's drowsiness while preventing major accidents. Furthermore, the HRV is measured with an ECG. The algorithm uses both wavelet and short Fourier transform (STFT). The algorithm extracts and selects the desired features. Then, the system applies both the support vector machine (SVM) and K- nearest neighbor (KNN) method. This achieves an accuracy of 80% or higher. In this research, the accuracy output for the SVM method is 83.8%, 82.5% when using STFT, and 87.5% when applying the WT technique. The algorithm with highest accuracy helps to decrease the number of accidents due to drowsiness. Furthermore, we applied unsupervised machine learning (clustering) to study the behavior of HRV during drowsiness. We can measure different levels of drowsiness based on the changes in the density and shape of the HRV clusters by using this method. Moreover, the pre-measured labeled data is not required to establish the algorithm in this method. Therefore, this algorithm evaluates drowsiness and no prerecorded data is required for any unknown object or person. Successful application of this drowsiness detection method may help to avoid traffic accidents. This study may be beneficial for policy maker's in preparing regulations to prevent traffic accidents worldwide and may also helpful for users to increase their knowledge and awareness regarding drowsiness detection. Keywords: Drowsiness, Machine Learning, Electrocardiogram (ECG), Heart Rate Variability (HRV), Wavelet Transform (WT).

اصطلاحهای موضوعی کنترل نشده

اصطلاح موضوعی
Biomedical engineering
اصطلاح موضوعی
Electrical engineering
اصطلاح موضوعی
Engineering

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Babaeian, Mohsen

نام شخص - ( مسئولیت معنوی درجه دوم )

مستند نام اشخاص تاييد نشده
Mozumdar, Mohammad

شناسه افزوده (تنالگان)

مستند نام تنالگان تاييد نشده
The Claremont Graduate University

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال