• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه

عنوان
Properties, Learning Algorithms, and Applications of Chain Graphs and Bayesian Hypergraphs

پدید آورنده
Javidian, Mohammad Ali

موضوع
Artificial intelligence,Computer science

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TL52017

زبان اثر

زبان متن نوشتاري يا گفتاري و مانند آن
انگلیسی

عنوان و نام پديدآور

عنوان اصلي
Properties, Learning Algorithms, and Applications of Chain Graphs and Bayesian Hypergraphs
نام عام مواد
[Thesis]
نام نخستين پديدآور
Javidian, Mohammad Ali
نام ساير پديدآوران
Valtorta, Marco

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
University of South Carolina
تاریخ نشرو بخش و غیره
2019

يادداشت کلی

متن يادداشت
276 p.

یادداشتهای مربوط به پایان نامه ها

جزئيات پايان نامه و نوع درجه آن
Ph.D.
کسي که مدرک را اعطا کرده
University of South Carolina
امتياز متن
2019

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
Probabilistic graphical models (PGMs) use graphs, either undirected, directed, or mixed, to represent possible dependencies among the variables of a multivariate probability distribution. PGMs, such as Bayesian networks and Markov networks, are now widely accepted as a powerful and mature framework for reasoning and decision making under uncertainty in knowledge-based systems. With the increase of their popularity, the range of graphical models being investigated and used has also expanded. Several types of graphs with different conditional independence interpretations - also known as Markov properties - have been proposed and used in graphical models. The graphical structure of a Bayesian network has the form of a directed acyclic graph (DAG), which has the advantage of supporting an interpretation of the graph in terms of cause-effect relationships. However, a limitation is that only asymmetric relationships, such as cause and effect relationships, can be modeled between variables in a DAG. Chain graphs, which admit both directed and undirected edges, can be used to overcome this limitation. Today there exist three main different interpretations of chain graphs in the literature. These are the Lauritzen-Wermuth-Frydenberg, the Andersson-Madigan-Perlman, and the multivariate regression interpretations. In this thesis, we study these interpretations based on their separation criteria and the intuition behind their edges. Since structure learning is a critical component in constructing an intelligent system based on a chain graph model, we propose new feasible and efficient structure learning algorithms to learn chain graphs from data under the faithfulness assumption. The proliferation of different PGMs that allow factorizations of different kinds leads us to consider a more general graphical structure in this thesis, namely directed acyclic hypergraphs. Directed acyclic hypergraphs are the graphical structure of a new probabilistic graphical model that we call Bayesian hypergraphs. Since there are many more hypergraphs than DAGs, undirected graphs, chain graphs, and, indeed, other graph-based networks, Bayesian hypergraphs can model much finer factorizations and thus are more computationally efficient. Bayesian hypergraphs also allow a modeler to represent causal patterns of interaction such as Noisy-OR graphically (without additional annotations). We introduce global, local and pairwise Markov properties of Bayesian hypergraphs and prove under which conditions they are equivalent. We also extend the causal interpretation of LWF chain graphs to Bayesian hypergraphs and provide corresponding formulas and a graphical criterion for intervention. The framework of graphical models, which provides algorithms for discovering and analyzing structure in complex distributions to describe them succinctly and extract unstructured information, allows them to be constructed and utilized effectively. Two of the most important applications of graphical models are causal inference and information extraction. To address these abilities of graphical models, we conduct a causal analysis, comparing the performance behavior of highly-configurable systems across environmental conditions (changing workload, hardware, and software versions), to explore when and how causal knowledge can be commonly exploited for performance analysis.

اصطلاحهای موضوعی کنترل نشده

اصطلاح موضوعی
Artificial intelligence
اصطلاح موضوعی
Computer science

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Javidian, Mohammad Ali

نام شخص - ( مسئولیت معنوی درجه دوم )

مستند نام اشخاص تاييد نشده
Valtorta, Marco

شناسه افزوده (تنالگان)

مستند نام تنالگان تاييد نشده
University of South Carolina

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال