Synthesis lectures on data mining and knowledge discovery,
مشخصه جلد
#2
شاپا ي ISSN فروست
2151-0075 ;
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references (pages 101-105).
یادداشتهای مربوط به مندرجات
متن يادداشت
1. Ensembles discovered -- Building ensembles -- Regularization -- Real-world examples: credit scoring + the Netflix challenge -- Organization of this book.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges - from investment timing to drug discovery, and fraud detection to recommendation systems - where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization - today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods - bagging, random forests, and boosting - to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity. This book is aimed at novice and advanced analytic researchers and practitioners - especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Safari Books Online
شماره انبار
CL0500000198
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Ensemble methods in data mining.
شماره استاندارد بين المللي کتاب و موسيقي
9781608452842
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Data mining-- Mathematical models.
موضوع مستند نشده
Set theory.
موضوع مستند نشده
COMPUTERS-- Enterprise Applications-- Business Intelligence Tools.
موضوع مستند نشده
COMPUTERS-- Intelligence (AI) & Semantics.
موضوع مستند نشده
Set theory.
مقوله موضوعی
موضوع مستند نشده
COM-- 004000
موضوع مستند نشده
COM-- 005030
رده بندی ديویی
شماره
006
.
3
ويراست
22
رده بندی کنگره
شماره رده
QA76
.
9
.
D343
نشانه اثر
S46
2010
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )