• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه
  • ورود / ثبت نام

عنوان
Non-convex Optimization in Machine Learning:

پدید آورنده
Janzamin, Majid

موضوع

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TL7p90p57n

زبان اثر

زبان متن نوشتاري يا گفتاري و مانند آن
انگلیسی

عنوان و نام پديدآور

عنوان اصلي
Non-convex Optimization in Machine Learning:
نام عام مواد
[Thesis]
نام نخستين پديدآور
Janzamin, Majid
عنوان اصلي به قلم نويسنده ديگر
Provable Guarantees Using Tensor Methods
نام ساير پديدآوران
Anandkumar, Animashree

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
UC Irvine
تاریخ نشرو بخش و غیره
2016

یادداشتهای مربوط به پایان نامه ها

کسي که مدرک را اعطا کرده
UC Irvine
امتياز متن
2016

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
In the last decade, machine learning algorithms have been substantially developed and they have gained tremendous empirical success. But, there is limited theoretical understanding about this success. Most real learning problems can be formulated as non-convex optimization problems which are difficult to analyze due to the existence of several local optimal solutions. In this dissertation, we provide simple and efficient algorithms for learning some probabilistic models with provable guarantees on the performance of the algorithm. We particularly focus on analyzing tensor methods which entail non-convex optimization. Furthermore, our main focus is on challenging overcomplete models. Although many existing approaches for learning probabilistic models fail in the challenging overcomplete regime, we provide scalable algorithms for learning such models with low computational and statistical complexity.In probabilistic modeling, the underlying structure which describes the observed variables can be represented by latent variables. In the overcomplete models, these hidden underlying structures are in a higher dimension compared to the dimension of observed variables. A wide range of applications such as speech and image are well-described by overcomplete models. In this dissertation, we propose and analyze overcomplete tensor decomposition methods and exploit them for learning several latent representations and latent variable models in the unsupervised setting. This include models such as mulitiview mixture model, Gaussian mixtures, Independent Component Analysis, and Sparse Coding (Dictionary Learning). Since latent variables are not observed, we also have the identifiability issue in latent variable modeling and characterizing latent representations. We also propose sufficient conditions for identifiability of overcomplete topic models. In addition to unsupervised setting, we adapt the tensor techniques to supervised setting for learning neural networks and mixtures of generalized linear models.

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Janzamin, Majid

نام شخص - ( مسئولیت معنوی درجه دوم )

مستند نام اشخاص تاييد نشده
Anandkumar, Animashree

شناسه افزوده (تنالگان)

مستند نام تنالگان تاييد نشده
UC Irvine

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال