• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه
  • ورود / ثبت نام

عنوان
Deep learning through sparse and low-rank modeling /

پدید آورنده
edited by Zhangyang Wang, Yun Fu, Thomas S. Huang.

موضوع
Machine learning.,COMPUTERS-- General.,Machine learning.

رده
Q325
.
5

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شابک

شابک
012813660X
شابک
9780128136607
شابک اشتباه
0128136596
شابک اشتباه
9780128136591

عنوان و نام پديدآور

عنوان اصلي
Deep learning through sparse and low-rank modeling /
نام عام مواد
[Book]
نام نخستين پديدآور
edited by Zhangyang Wang, Yun Fu, Thomas S. Huang.

وضعیت نشر و پخش و غیره

محل نشرو پخش و غیره
[Place of publication not identified] :
نام ناشر، پخش کننده و غيره
Academic Press, an imprint of Elsevier,
تاریخ نشرو بخش و غیره
[2019]
تاریخ نشرو بخش و غیره
©2019

مشخصات ظاهری

نام خاص و کميت اثر
1 online resource

فروست

عنوان فروست
Computer vision and pattern recognition series

یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر

متن يادداشت
Includes bibliographical references and index.

یادداشتهای مربوط به مندرجات

متن يادداشت
Front Cover; Deep Learning Through Sparse and Low-Rank Modeling; Copyright; Contents; Contributors; About the Editors; Preface; Acknowledgments; 1 Introduction; 1.1 Basics of Deep Learning; 1.2 Basics of Sparsity and Low-Rankness; 1.3 Connecting Deep Learning to Sparsity and Low-Rankness; 1.4 Organization; References; 2 Bi-Level Sparse Coding: A Hyperspectral Image Classi cation Example; 2.1 Introduction; 2.2 Formulation and Algorithm; 2.2.1 Notations; 2.2.2 Joint Feature Extraction and Classi cation; 2.2.2.1 Sparse Coding for Feature Extraction
متن يادداشت
2.2.2.2 Task-Driven Functions for Classi cation2.2.2.3 Spatial Laplacian Regularization; 2.2.3 Bi-level Optimization Formulation; 2.2.4 Algorithm; 2.2.4.1 Stochastic Gradient Descent; 2.2.4.2 Sparse Reconstruction; 2.3 Experiments; 2.3.1 Classi cation Performance on AVIRIS Indiana Pines Data; 2.3.2 Classi cation Performance on AVIRIS Salinas Data; 2.3.3 Classi cation Performance on University of Pavia Data; 2.4 Conclusion; 2.5 Appendix; References; 3 Deep l0 Encoders: A Model Unfolding Example; 3.1 Introduction; 3.2 Related Work; 3.2.1 l0- and l1-Based Sparse Approximations
متن يادداشت
3.2.2 Network Implementation of l1-Approximation3.3 Deep l0 Encoders; 3.3.1 Deep l0-Regularized Encoder; 3.3.2 Deep M-Sparse l0 Encoder; 3.3.3 Theoretical Properties; 3.4 Task-Driven Optimization; 3.5 Experiment; 3.5.1 Implementation; 3.5.2 Simulation on l0 Sparse Approximation; 3.5.3 Applications on Classi cation; 3.5.4 Applications on Clustering; 3.6 Conclusions and Discussions on Theoretical Properties; References; 4 Single Image Super-Resolution: From Sparse Coding to Deep Learning; 4.1 Robust Single Image Super-Resolution via Deep Networks with Sparse Prior; 4.1.1 Introduction
متن يادداشت
4.1.2 Related Work4.1.3 Sparse Coding Based Network for Image SR; 4.1.3.1 Image SR Using Sparse Coding; 4.1.3.2 Network Implementation of Sparse Coding; 4.1.3.3 Network Architecture of SCN; 4.1.3.4 Advantages over Previous Models; 4.1.4 Network Cascade for Scalable SR; 4.1.4.1 Network Cascade for SR of a Fixed Scaling Factor; 4.1.4.2 Network Cascade for Scalable SR; 4.1.4.3 Training Cascade of Networks; 4.1.5 Robust SR for Real Scenarios; 4.1.5.1 Data-Driven SR by Fine-Tuning; 4.1.5.2 Iterative SR with Regularization; Blurry Image Upscaling; Noisy Image Upscaling; 4.1.6 Implementation Details
متن يادداشت
4.1.7 Experiments4.1.7.1 Algorithm Analysis; 4.1.7.2 Comparison with State-of-the-Art; 4.1.7.3 Robustness to Real SR Scenarios; Data-Driven SR by Fine-Tuning; Regularized Iterative SR; 4.1.8 Subjective Evaluation; 4.1.9 Conclusion and Future Work; 4.2 Learning a Mixture of Deep Networks for Single Image Super-Resolution; 4.2.1 Introduction; 4.2.2 The Proposed Method; 4.2.3 Implementation Details; 4.2.4 Experimental Results; 4.2.4.1 Network Architecture Analysis; 4.2.4.2 Comparison with State-of-the-Art; 4.2.4.3 Runtime Analysis; 4.2.5 Conclusion and Future Work; References
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.

یادداشتهای مربوط به سفارشات

منبع سفارش / آدرس اشتراک
Ingram Content Group
شماره انبار
9780128136607

ویراست دیگر از اثر در قالب دیگر رسانه

عنوان
Deep learning through sparse and low-rank modeling.
شماره استاندارد بين المللي کتاب و موسيقي
9780128136591

موضوع (اسم عام یاعبارت اسمی عام)

موضوع مستند نشده
Machine learning.
موضوع مستند نشده
COMPUTERS-- General.
موضوع مستند نشده
Machine learning.

مقوله موضوعی

موضوع مستند نشده
COM-- 000000

رده بندی ديویی

شماره
006
.
31
ويراست
23

رده بندی کنگره

شماره رده
Q325
.
5

نام شخص - (مسئولیت معنوی برابر )

مستند نام اشخاص تاييد نشده
Fu, Yun
مستند نام اشخاص تاييد نشده
Huang, Thomas S.,1936-
مستند نام اشخاص تاييد نشده
Wang, Zhangyang

مبدا اصلی

تاريخ عمليات
20200822085100.0
قواعد فهرست نويسي ( بخش توصيفي )
pn

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

اطلاعات رکورد کتابشناسی

نوع ماده
[Book]

اطلاعات دسترسی رکورد

تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال