analysis, features, classification and retrieval /
نام نخستين پديدآور
Dengsheng Zhang.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Cham, Switzerland :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
[2019]
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource
فروست
عنوان فروست
Texts in computer science
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
Part I: Preliminaries -- Fourier Transform -- Windowed Fourier Transform -- Wavelet Transform -- Part II: Image Representation and Feature Extraction -- Color Feature Extraction -- Texture Feature Extraction -- Shape Representation -- Part III: Image Classification and Annotation -- Bayesian Classification -- Support Vector Machines -- Artificial Neural Networks -- Image Annotation with Decision Trees -- Part IV: Image Retrieval and Presentation -- Image Indexing -- Image Ranking -- Image Presentation -- Appendix: Deriving the Conditional Probability of a Gaussian Process.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This reader-friendly textbook presents a comprehensive review of the essentials of image data mining, and the latest cutting-edge techniques used in the field. The coverage spans all aspects of image analysis and understanding, offering deep insights into areas of feature extraction, machine learning, and image retrieval. The theoretical coverage is supported by practical mathematical models and algorithms, utilizing data from real-world examples and experiments. Topics and features: Describes the essential tools for image mining, covering Fourier transforms, Gabor filters, and contemporary wavelet transforms Reviews a varied range of state-of-the-art models, algorithms, and procedures for image mining Emphasizes how to deal with real image data for practical image mining Highlights how such features as color, texture, and shape can be mined or extracted from images for image representation Presents four powerful approaches for classifying image data, namely, Bayesian classification, Support Vector Machines, Neural Networks, and Decision Trees Discusses techniques for indexing, image ranking, and image presentation, along with image database visualization methods Provides self-test exercises with instructions or Matlab code, as well as review summaries at the end of each chapter This easy-to-follow work illuminates how concepts from fundamental and advanced mathematics can be applied to solve a broad range of image data mining problems encountered by students and researchers of computer science. Students of mathematics and other scientific disciplines will also benefit from the applications and solutions described in the text, together with the hands-on exercises that enable the reader to gain first-hand experience of computing. Dr. Dengsheng Zhang is a Senior Lecturer in the School of Science, Engineering and Information Technology at Federation University Australia.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9783030179892
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Fundamentals of image data mining.
شماره استاندارد بين المللي کتاب و موسيقي
9783030179885
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Multimedia data mining.
موضوع مستند نشده
Multimedia data mining.
مقوله موضوعی
موضوع مستند نشده
COM012000
موضوع مستند نشده
UYQV
موضوع مستند نشده
UYT
موضوع مستند نشده
UYT
رده بندی ديویی
شماره
006
.
3/12
ويراست
23
رده بندی کنگره
شماره رده
QA76
.
9
.
D343
نشانه اثر
Z43
2019
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )