• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه

عنوان
Fine-grained Arabic named entity recognition

پدید آورنده
Alotaibi, Fahd Saleh S.

موضوع
PJ Semitic ; QA75 Electronic computers. Computer science ; QA76 Computer software

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TLets649342

عنوان و نام پديدآور

عنوان اصلي
Fine-grained Arabic named entity recognition
نام عام مواد
[Thesis]
نام نخستين پديدآور
Alotaibi, Fahd Saleh S.

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
University of Birmingham
تاریخ نشرو بخش و غیره
2015

یادداشتهای مربوط به پایان نامه ها

جزئيات پايان نامه و نوع درجه آن
Thesis (Ph.D.)
امتياز متن
2015

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
This thesis addresses the problem of fine-grained NER for Arabic, which poses unique linguistic challenges to NER; such as the absence of capitalisation and short vowels, the complex morphology, and the highly in infection process. Instead of classifying the detected NE phrases into small sets of classes, we target a broader range (i.e. 50 fine-grained classes 'hierarchal-based of two levels') to increase the depth of the semantic knowledge extracted. This has increased the number of classes, complicating the task, when compared with traditional (coarse-grained) NER, because of the increase in the number of semantic classes and the decrease in semantic differences between fine-grained classes. Our approach to developing fine-grained NER relies on two different supervised Machine Learning (ML) technologies (i.e. Maximum Entropy 'ME' and Conditional Random Fields 'CRF'), which require annotated training data in order to learn by extracting informative features. We develop a methodology which exploit the richness of Arabic Wikipedia (A W) in order to create a scalable fine-grained lexical resource and a corpus automatically. Moreover, two gold-standard created corpora from different genres were also developed to perform comparable evaluation. The thesis also developed a new approach to feature representation by relying on the dependency structure of the sentence to overcome the limitation of traditional window-based (i.e. n-gram) representation. Furthermore, by exploiting the richness of unannotated textual data to extract global informative features using word-level clustering technique was also achieved. Each contribution was evaluated via controlled experiment and reported using three commonly applied metrics, i.e. precision, recall and harmonic F-measure.

موضوع (اسم عام یاعبارت اسمی عام)

موضوع مستند نشده
PJ Semitic ; QA75 Electronic computers. Computer science ; QA76 Computer software

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Alotaibi, Fahd Saleh S.

شناسه افزوده (تنالگان)

مستند نام تنالگان تاييد نشده
University of Birmingham

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال