• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه

عنوان
Stochastic geometry for image analysis

پدید آورنده
edited by Xavier Descombes.

موضوع
Image processing -- Statistical methods.,Stochastic geometry.,TECHNOLOGY & ENGINEERING -- Imaging Systems.

رده
TA1637
.
E358
2012

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شابک

شابک
1118601130
شابک
1118601238
شابک
1118601327
شابک
9781118601136
شابک
9781118601235
شابک
9781118601327

شماره کتابشناسی ملی

شماره
b566848

عنوان و نام پديدآور

عنوان اصلي
Stochastic geometry for image analysis
نام عام مواد
[Book]
نام نخستين پديدآور
edited by Xavier Descombes.

وضعیت نشر و پخش و غیره

محل نشرو پخش و غیره
London
نام ناشر، پخش کننده و غيره
ISTE ; Hoboken, NJ : Wiley
تاریخ نشرو بخش و غیره
2012

مشخصات ظاهری

نام خاص و کميت اثر
(x, 345 pages) : illustrations

فروست

عنوان فروست
Digital signal and image processing series.

یادداشتهای مربوط به مندرجات

متن يادداشت
Chapter 1. Introduction / X. Descombes --; Chapter 2. Marked Point Processes for Object Detection / X. Descombes --; 2.1. Principal definitions --; 2.2. Density of a point process --; 2.3. Marked point processes --; 2.4. Point processes and image analysis --; 2.4.1. Bayesian versus non-Bayesian --; 2.4.2. A priori versus reference measure --; Chapter 3. Random Sets for Texture Analysis / C. Lantǔjoul, M. Schmitt --; 3.1. Introduction --; 3.2. Random sets --; 3.2.1. Insufficiency of the spatial law --; 3.2.2. Introduction of a topological context --; 3.2.3. The theory of random closed sets (RACS) --; 3.2.4. Some examples --; 3.2.5. Stationarity and isotropy --; 3.3. Some geostatistical aspects --; 3.3.1. The ergodicity assumption --; 3.3.2. Inference of the DF of a stationary ergodic RACS --; 3.3.2.1. Construction of the estimator --; 3.3.2.2. On sampling --; 3.3.3. Individual analysis of objects --; 3.4. Some morphological aspects --; 3.4.1. Geometric interpretation --; 3.4.1.1. Point --; 3.4.1.2. Pair of points --; 3.4.1.3. Segment --; 3.4.1.4. Ball --; 3.4.2. Filtering --; 3.4.2.1. Opening and closing --; 3.4.2.2. Sequential alternate filtering --; 3.5. Appendix: demonstration of Miles' formulae for the Boolean model --; Chapter 4. Simulation and Optimization / F. Lafarge, X. Descombes, E. Zhizhina, R. Minlos --; 4.1. Discrete simulations: Markov chain Monte Carlo algorithms --; 4.1.1. Irreducibility, recurrence, and ergodicity --; 4.1.1.1. Definitions --; 4.1.1.2. Stationarity --; 4.1.1.3. Convergence --; 4.1.1.4. Irreducibility --; 4.1.1.5. Aperiodicity --; 4.1.1.6. Harris recurrence --; 4.1.1.7. Ergodicity --; 4.1.1.8. Geometric ergodicity --; 4.1.1.9. Central limit theorem --; 4.1.2. Metropolis-Hastings algorithm --; 4.1.3. Dimensional jumps --; 4.1.3.1. Mixture of kernels --; 4.1.3.2. & pi; -reversibility --; 4.1.4. Standard proposition kernels --; 4.1.4.1. Simple perturbations --; 4.1.4.2. Model switch --; 4.1.4.3. Birth and death --; 4.1.5. Specific proposition kernels --; 4.1.5.1. Creating complex transitions from standard transitions --; 4.1.5.2. Data-driven perturbations --; 4.1.5.3. Perturbations directed by the current state --; 4.1.5.4. Composition of kernels --; 4.2. Continuous simulations --; 4.2.1. Diffusion algorithm --; 4.2.2. Birth and death algorithm --; 4.2.3. Muliple births and deaths algorithm --; 4.2.3.1. Convergence of the distributions --; 4.2.3.2. Birth and death process --; 4.2.4. Discrete approximation --; 4.2.4.1. Acceleration of the multiple births and deaths algorithm --; 4.3. Mixed simulations --; 4.3.1. Jump process --; 4.3.2. Diffusion process --; 4.3.3. Coordination of jumps and diffusions --; 4.4. Simulated annealing --; 4.4.1. Cooling schedule --; 4.4.2. Initial temperature T₀ --; 4.4.3. Logarithmic decrease --; 4.4.4. Geometric decrease --; 4.4.5. Adaptive reduction --; 4.4.6. Stopping criterion/final temperature --; Chapter 5. Parametric Inference for Marked Point Processes in Image Analysis / R. Stoica, F. Chatelain, M. Sigelle --; 5.1. Introduction --; 5.2. First question: what and where are the objects in the image? --; 5.3. Second question: what are the parameters of the point process that models the objects observed in the image? --; 5.3.1. Complete data --; 5.3.1.1. Maximum likelihood --; 5.3.1.2. Maximum pseudolikelihood --; 5.3.2. Incomplete data: EM algorithm --; 5.4. Conclusion and perspectives --; 5.5. Acknowledgments --; Chapter 6. How to Set Up a Point Process? / X. Descombes --; 6.1. From disks to polygons, via a discussion of segments --; 6.2. From no overlap to alignment --; 6.3. From the likelihood to a hypothesis test --; 6.4. From Metropolis-Hastings to multiple births and deaths --; Chapter 7. Population Counting / X. Descombes --; 7.1. Detection of Virchow-Robin spaces --; 7.1.1. Data modeling --; 7.1.2. Marked point process --; 7.1.3. Reversible jump MCMC algorithm --; 7.1.4. Results --; 7.2. Evaluation of forestry resources --; 7.2.1. 2D model --; 7.2.1.1. Prior --; 7.2.1.2. Data term --; 7.2.1.3. Optimization --; 7.2.1.4. Results --; 7.2.2. 3D model --; 7.2.2.1. Results --; 7.3. Counting a population of flamingos --; 7.3.1. Estimation of the flamingo color --; 7.3.2. Simulation and optimization by multiple births and deaths --; 7.3.3. Results --; 7.4. Counting the boats at a port --; 7.4.1. Initialization of the optimization algorithm --; 7.4.1.1. Parameter & gamma; < sub> d< /sub> --; 7.4.1.2. Calibration of the do parameter --; 7.4.2. Initial results --; 7.4.3. Modification of the data energy --; 7.4.3.1. First modification of the prior energy --; 7.4.3.2. Second modification of the prior energy --; Chapter 8. Structure Extraction / F. Lafarge, X. Descombes --; 8.1. Detection of the road network --; 8.2. Extraction of building footprints --; 8.3. Representation of natural textures --; 8.3.1. Simple model --; 8.3.1.1. Data term --; 8.3.1.2. Sampling by jump diffusion --; 8.3.1.3. Results --; 8.3.2. Models with complex interactions --; Chapter 9. Shape Recognition / F. Lafarge, C. Mallet --; 9.1. Modeling of a LIDAR signal --; 9.1.1. Motivation --; 9.1.2. Model library --; 9.1.2.1. Energy formulation --; 9.1.3. Sampling --; 9.1.4. Results --; 9.1.4.1. Simulated data --; 9.1.4.2. Satellite data: large footprint waveforms --; 9.1.4.3. Airborne data: small footprint waveforms --; 9.1.4.4. Application to the classification of 3D point clouds --; 9.2. 3D reconstruction of buildings --; 9.2.1. Library of 3D models --; 9.2.2. Bayesian formulation --; 9.2.2.1. Likelihood --; 9.2.2.2. A priori --; 9.2.3. Optimization --; 9.2.4. Results and discussion --; Bibliography --; List of Authors --; Index.

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling--

موضوع (اسم عام یاعبارت اسمی عام)

موضوع مستند نشده
Image processing -- Statistical methods.
موضوع مستند نشده
Stochastic geometry.
موضوع مستند نشده
TECHNOLOGY & ENGINEERING -- Imaging Systems.

رده بندی کنگره

شماره رده
TA1637
نشانه اثر
.
E358
2012

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
edited by Xavier Descombes.

نام شخص - (مسئولیت معنوی برابر )

مستند نام اشخاص تاييد نشده
Xavier Descombes

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

اطلاعات رکورد کتابشناسی

نوع ماده
[Book]

اطلاعات دسترسی رکورد

تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال