: machine learning and deep learning with Python, scikit-learn, and TensorFlow
نام نخستين پديدآور
/ Sebastian Raschka, Vahid Mirajalili
وضعیت ویراست
وضعيت ويراست
2th edition
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Birmingham, UK
نام ناشر، پخش کننده و غيره
: Packt Publishing
تاریخ نشرو بخش و غیره
, 2017.
مشخصات ظاهری
نام خاص و کميت اثر
xviii, 595 p.
ساير جزييات
: illustrations
ابعاد
; 28 cm
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes index
یادداشتهای مربوط به مندرجات
متن يادداشت
1. Giving computers the ability to learn from data -- 2. Training simple machine learning algorithms for classification -- 3. A tour of machine learning classifiers using scikit-learn -- 4. Building good training sets-data preprocessing -- 5. Compressing data via dimensionality reduction -- 6. Learning best practices for model evaluation and hyperpaarmeter tuning -- 7.Combining different models for ensemble learning -- 8. Applying machine learning to sentiment analysis -- 9. embedding a machine learning model into a web application -- 10. Predicting continuous target variables with regression analysis -- 11. Working with unlabeled data-clustering analysis -- 12. Implementing a multilayer artificial neural network from Scratch -- 13. Parallelizing neural network training with TensorFlow -- 14. Going deeper -- The mechanics of TensorFlow -- 15. Classifying images with deep convolutional neural networks -- 16. Modeling sequential data using recurrent neural networks.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Summary:"Unlock modern machine learning and deep learning techniques with Python by using the latest cutting-edge open source Python libraries. About This Book * Second edition of the bestselling book on Machine Learning * A practical approach to key frameworks in data science, machine learning, and deep learning * Use the most powerful Python libraries to implement machine learning and deep learning * Get to know the best practices to improve and optimize your machine learning systems and algorithms Who This Book Is For If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential and unmissable resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for developers and data scientists who want to teach computers how to learn from data. What You Will Learn * Understand the key frameworks in data science, machine learning, and deep learning * Harness the power of the latest Python open source libraries in machine learning * Explore machine learning techniques using challenging real-world data * Master deep neural network implementation using the TensorFlow library * Learn the mechanics of classification algorithms to implement the best tool for the job * Predict continuous target outcomes using regression analysis * Uncover hidden patterns and structures in data with clustering * Delve deeper into textual and social media data using sentiment analysis In Detail Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. "--Publisher's description.
موضوع (اسم عام یاعبارت اسمی عام)
عنصر شناسه ای
Python (Computer program language).
عنصر شناسه ای
Machine learning
رده بندی کنگره
شماره رده
QA76
.
73
.
P98
نشانه اثر
R37
2017
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )