• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Introduction to real analysis

پدید آورنده
/ Robert G. Bartle, Donald R. Sherbert

موضوع
Mathematical analysis,Functions of real variables

رده
QA300
.
B294
2011

کتابخانه
Central Library, Center of Documentation and Supply of Scientific Resources

محل استقرار
استان: East Azarbaijan ـ شهر:

Central Library, Center of Documentation and Supply of Scientific Resources

تماس با کتابخانه : 04133443834

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
9780471433316 (hardback)

NATIONAL BIBLIOGRAPHY NUMBER

Country Code
IR
Number
E-6096

LANGUAGE OF THE ITEM

.Language of Text, Soundtrack etc
انگلیسی

COUNTRY OF PUBLICATION OR PRODUCTlON

Country of publication
IR

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Introduction to real analysis
General Material Designation
[Book]
First Statement of Responsibility
/ Robert G. Bartle, Donald R. Sherbert

EDITION STATEMENT

Edition Statement
4th ed.

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
Hoboken, NJ
Name of Publisher, Distributor, etc.
: Wiley,
Date of Publication, Distribution, etc.
, c2011.

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
xiii, 402 p. , ill. , 26 cm.

NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.

Text of Note
Print

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references and index.

CONTENTS NOTE

Text of Note
"This text provides the fundamental concepts and techniques of real analysis for students in all of these areas. It helps one develop the ability to think deductively, analyse mathematical situations and extend ideas to a new context. Like the first three editions, this edition maintains the same spirit and user-friendly approach with addition examples and expansion on Logical Operations and Set Theory. There is also content revision in the following areas: introducing point-set topology before discussing continuity, including a more thorough discussion of limsup and limimf, covering series directly following sequences, adding coverage of Lebesgue Integral and the construction of the reals, and drawing student attention to possible applications wherever possible"--Provided by publisher.
Text of Note
Ch. 1.Preliminaries: 1.1. Sets and functions; 1.2. Mathematical induction; 1.3. Finite and infinite sets -- Ch. 2. The Real Numbers: 2.1. The algebraic and order properties of R; 2.2. Absolute value and real line; 2.3. The completeness property of R; 2.4. Applications of the supremum property; 2.5. Intervals -- Ch. 3. Sequences and series: 3.1. Sequences and their limits; 3.2. Limit theorems; 3.3. Monotone sequences; 3.4. Subsequences and the Bolzano-Weierstrass theorem; 3.5. The Cauchy criterion; 3.6. Properly divergent sequences; 3.7. Introduction to infinite series -- Ch. 4. Limits: 4.1. Limits of functions; 4.2. Limit theorems; 4.3. Some extensions of the limit concept -- Ch. 5. Continuous functions: 5.1. Continuous runctions; 5.2 . Combinations of continuous runctions; 5.3. Continuous functions on intervals; 5.4. Uniform continuity; 5.5. Continuity and gauges; 5.6. Monotone and inverse functions -- Ch. 6. Differentiation: 6.1. The derivative; 6.2. The mean value theorem; 6.3. L'Hospital's rules; 6.4. Taylor's Theorem -- Ch. 7. The Riemann integral: 7.1. Riemann integral; 7.2. Riemann integrable functions; 7.3. The fundamental theorem; 7.4. The Darboux integral; 7.5. Approximate integration -- Ch. 8. Sequences of functions: 8.1. Pointwise and uniform convergence; 8.2. Interchange of limits; 8.3. The exponential and logarithmic functions; 8.4. The trigonometric functions -- Ch. 9. Infinite series: 9.1. Absolute convergence; 9.2. Tests for absolute convergence; 9.3. Tests for nonabsolute convergence; 9.4. Series of functions -- Ch. 10. The generalized Riemann integral: 10.1. Definition and main poperties; 10.2. Improper and Lebesgue integrals; 10.3. Infinite intervals; 10.4. Convergence theorems -- Ch. 11. A glimpse into topology: 11.1. Open and closed sets in R; 11.2 Compact sets; 11.3. Continuous functions; 11.4. Metrtic Spaces -- Appendix A. Logic and proofs -- Appendix B. Finite and countable sets -- Appendix C. The Riemann and Lebesgue criteria -- Appendix D. Approximate integration -- Appendix E. Two examples.

TOPICAL NAME USED AS SUBJECT

Mathematical analysis
Functions of real variables

DEWEY DECIMAL CLASSIFICATION

Number
515

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA300
Book number
.
B294
2011

PERSONAL NAME - PRIMARY RESPONSIBILITY

Bartle, Robert Gardner,1927-

PERSONAL NAME - SECONDARY RESPONSIBILITY

Sherbert, Donald R.,1935-

ORIGINATING SOURCE

Country
ایران

old catalog

p

BL
1

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival