• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Fete of combinatorics and computer science

پدید آورنده
/ Gyula O.H. Katona, Alexander Schrijver, Tamaas Szionyi (eds.

موضوع
Combinatorial analysis,Computer science, Mathematics,Kongress., swd

رده
QA164
.
F484
2010

کتابخانه
Central Library, Center of Documentation and Supply of Scientific Resources

محل استقرار
استان: East Azarbaijan ـ شهر:

Central Library, Center of Documentation and Supply of Scientific Resources

تماس با کتابخانه : 04133443834

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
9783642135804 (electronic bk.)

NATIONAL BIBLIOGRAPHY NUMBER

Country Code
IR
Number
E-4893

LANGUAGE OF THE ITEM

.Language of Text, Soundtrack etc
انگلیسی

COUNTRY OF PUBLICATION OR PRODUCTlON

Country of publication
IR

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Fete of combinatorics and computer science
General Material Designation
[Book]
First Statement of Responsibility
/ Gyula O.H. Katona, Alexander Schrijver, Tamaas Szionyi (eds.

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
Berlin ;Heidelberg ;New York
Name of Publisher, Distributor, etc.
: Springer
Date of Publication, Distribution, etc.
, 2010.

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
365 p., ill.

SERIES

Series Title
(Bolyai Society mathematical studies
Volume Designation
; 20.)

NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.

Text of Note
Print

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references.

CONTENTS NOTE

Text of Note
Cover -- Table of Contents -- Preface -- High Degree Graphs Contain Large-Star Factors -- 1. Introduction -- 2. Regular Graphs -- 3. The Proof Of The Main Result -- 4. Concluding Remarks And Open Problems -- References -- Iterated Triangle Partitions -- 1. Introduction -- 2. Subdividing By Bisectors -- 2.1. Subdividing Into Three Daughters -- 2.2. Dividing Into Six Triangles -- 3. Subdividing By Medians -- 3.1. Analytic Approach -- 3.2. Hyperbolic Approach -- 4. Subdividing By The Gergonne Point -- 5. Subdividing By The Lemoine Point -- 6. Concluding Remarks -- References -- Pagerank And Random Walks On Graphs -- 1. Introduction -- 2. Laplacian, The Green'S Function And Pagerank -- 3. Pagerank, The Hitting Time And The Effective Resistance In Electrical Networks -- 4. Several Matrix-Forest Theorems -- 5. Pagerank And Other Invariants In Terms Of Rooted Spanning Forests -- 6. Using The Generalized Hitting Time To Find Sparse Cuts -- 7. Using Pagerank To Estimate The Effective Resistance -- References -- Solution Of Peter Winkler'S Pizza Problem*! -- 1. Introduction -- 2. The Lower Bound -- 2.1. Preliminaries -- 2.2. Minimal Triples -- 2.3. An Auxiliary One-Jump Strategy -- 2.4. A Two-Jump Strategy -- 2.5. Proof of the Lower Bound -- 3. The Upper Bound -- 4. Fixed Number Of Slices -- 5. Cuttings Into 15 And 21 Slices -- 6. One-Jump Strategies -- 6.1. Lower Bound -- 6.2. Upper Bound -- 7. Algorithms -- 7.1. Linear Algorithm -- 7.2. Optimal Strategies -- References -- Tight Bounds For Embedding Bounded Degree Trees -- 1. Introduction -- 2. The Non-Extremal Case -- 2.1. Some Tools for the Proofs in the Non-Extremal Cases -- 2.2 . The First Non-Extremal Case: T Has a Broad Subtree -- 2.3. The Second Non-Extremal Case: T Has a Long Subtree -- 3. The Extremal Case -- 3.1. The First Extremal Case -- 3.2. The Second Extremal Case -- 4. Lower Bound For The Minimum Degree In G -- 4.1. The First Extremal Case -- 4.2. The Second Extremal Case -- References -- Betti Numbers Are Testable* -- 1. Introduction -- 2. The Convergence Of Simplicial Complexes -- 3. Betti Numbers And Combinatorial Laplacians -- 4. Weak Convergence Of Probability Measures -- 5. Spectral Convergence -- 6. The Proof Of Theorem 1 -- References -- Rigid And Globally Rigid Graphs With Pinned Vertices -- 1. Introduction -- 2. Rigid Frameworks With Pinned Vertices -- 3. Rigid Graphs With Pinned Vertices -- 4. The Two-Dimensional Rigidity Matroid -- 5. Optimal Families Of Tracks And Smallest Pinning Sets -- 6. The Network Localization Problem -- 7. Graphs With A Connected Rigidity Matroid -- 7.1. M-Connected Graphs With Pinned Vertices -- 8. Low Cost Anchor Sets In Uniquely Localizable Networks -- References -- Noise Sensitivity And Chaos In Social Choice Theory -- 1. Introduction -- 2. Proofs Of The Equivalence Theorems -- 2.1. A Coupling Argument -- 2.2. An Elementary Harmonic Analysis Argument -- 2.3. Individual Power -- 3. Multi-Level Majority -- T$

SERIES

Title
Bolyai Society mathematical studies
Volume Number
20

TOPICAL NAME USED AS SUBJECT

Combinatorial analysis
Computer science, Mathematics
Kongress., swd

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA164
Book number
.
F484
2010

PERSONAL NAME - SECONDARY RESPONSIBILITY

Katona, G
Schrijver, A
Szionyi, T

ORIGINATING SOURCE

Country
ایران

old catalog

p

BL
1

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival