• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Machine Learning Augmentation Micro-Sensors for Smart Device Applications

پدید آورنده
Hasan, Mohammad H.

موضوع
Artificial intelligence,Computer science,Mathematics,Mechanical engineering

رده

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

NATIONAL BIBLIOGRAPHY NUMBER

Number
TLpq2467600671

LANGUAGE OF THE ITEM

.Language of Text, Soundtrack etc
انگلیسی

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Machine Learning Augmentation Micro-Sensors for Smart Device Applications
General Material Designation
[Thesis]
First Statement of Responsibility
Hasan, Mohammad H.
Subsequent Statement of Responsibility
Alsaleem, Fadi

.PUBLICATION, DISTRIBUTION, ETC

Name of Publisher, Distributor, etc.
The University of Nebraska - Lincoln
Date of Publication, Distribution, etc.
2020

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
143

DISSERTATION (THESIS) NOTE

Dissertation or thesis details and type of degree
Ph.D.
Body granting the degree
The University of Nebraska - Lincoln
Text preceding or following the note
2020

SUMMARY OR ABSTRACT

Text of Note
Novel smart technologies such as wearable devices and unconventional robotics have been enabled by advancements in semiconductor technologies, which have miniaturized the sizes of transistors and sensors. These technologies promise great improvements to public health. However, current computational paradigms are ill-suited for use in novel smart technologies as they fail to meet their strict power and size requirements. In this dissertation, we present two bio-inspired colocalized sensing-and-computing schemes performed at the sensor level: continuous-time recurrent neural networks (CTRNNs) and reservoir computers (RCs). These schemes arise from the nonlinear dynamics of micro-electro-mechanical systems (MEMS), which facilitates computing, and the inherent ability of MEMS devices for sensing. Furthermore, this dissertation addresses the high-voltage requirements in electrostatically actuated MEMS devices using a passive amplification scheme. The CTRNN architecture is emulated using a network of bistable MEMS devices. This bistable behavior is shown in the pull-in, the snapthrough, and the feedback regimes, when excited around the electrical resonance frequency. In these regimes, MEMS devices exhibit key behaviors found in biological neuronal populations. When coupled, networks of MEMS are shown to be successful at classification and control tasks. Moreover, MEMS accelerometers are shown to be successful at acceleration waveform classification without the need for external processors. MEMS devices are additionally shown to perform computing by utilizing the RC architecture. Here, a delay-based RC scheme is studied, which uses one MEMS device to simulate the behavior of a large neural network through input modulation. We introduce a modulation scheme that enables colocalized sensing-and-computing by modulating the bias signal. The MEMS RC is tested to successfully perform pure computation and colocalized sensing-and-computing for both classification and regression tasks, even in noisy environments. Finally, we address the high-voltage requirements of electrostatically actuated MEMS devices by proposing a passive amplification scheme utilizing the mechanical and electrical resonances of MEMS devices simultaneously. Using this scheme, an order-of-magnitude of amplification is reported. Moreover, when only electrical resonance is used, we show that the MEMS device exhibits a computationally useful bistable response.

TOPICAL NAME USED AS SUBJECT

Artificial intelligence
Computer science
Mathematics
Mechanical engineering

PERSONAL NAME - PRIMARY RESPONSIBILITY

Alsaleem, Fadi
Hasan, Mohammad H.

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

p

[Thesis]
276903

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival