• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Sparse Principal Component Analysis:

پدید آورنده
Zhang, Youwei

موضوع

رده

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

NATIONAL BIBLIOGRAPHY NUMBER

Number
TL34g5207t

LANGUAGE OF THE ITEM

.Language of Text, Soundtrack etc
انگلیسی

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Sparse Principal Component Analysis:
General Material Designation
[Thesis]
First Statement of Responsibility
Zhang, Youwei
Title Proper by Another Author
Algorithms and Applications
Subsequent Statement of Responsibility
El Ghaoui, Laurent

.PUBLICATION, DISTRIBUTION, ETC

Name of Publisher, Distributor, etc.
UC Berkeley
Date of Publication, Distribution, etc.
2011

DISSERTATION (THESIS) NOTE

Body granting the degree
UC Berkeley
Text preceding or following the note
2011

SUMMARY OR ABSTRACT

Text of Note
The Sparse Principal Component Analysis (Sparse PCA) problem is a variant of the classical PCA problem. The goal of Sparse PCA is to achieve a trade-off between the explained variance along a normalized vector, and the number of non-zero components of that vector. Sparse PCA has a wide array of applications in machine learning and engineering. Unfortunately, this problem is also combinatorially hard and hence various sub-optimal algorithms and approximation formulations have been proposed to tackle it. In this dissertation, we first discuss convex relaxation techniques that efficiently produce good approximate solutions. We then describe several algorithms solving these relaxations as well as greedy algorithms that iteratively improve the solution quality.The dissertation then focuses on solving the attractive formulation called DSPCA (a Direct formulation for Sparse PCA) for large-scale problems. Although Sparse PCA has apparent advantages compared to PCA, such as better interpretability, it is generally thought to be computationally much more expensive. We demonstrate the surprising fact that sparse PCA can be easier than PCA in practice, and that it can be reliably applied to very large data sets. This comes from a rigorous feature elimination pre-processing result, coupled with the favorable fact that features in real-life data typically have rapidly decreasing variances, which allows for many features to be eliminated. We introduce a fast block coordinate ascent algorithm with much better computational complexity than the existing first-order ones. We provide experimental results obtained on text corpora involving millions of documents and hundreds of thousands of features.Another focus of the dissertation is to illustrate the utility of Sparse PCA in various applications, ranging from senate voting and finance to text mining. In particular, we apply Sparse PCA to the analysis of text data, with online news as our focus. Our experimental results on various data sets illustrate how Sparse PCA can help organize a large corpus of text data in a user-interpretable way, providing an attractive alternative approach to topic models.

PERSONAL NAME - PRIMARY RESPONSIBILITY

Zhang, Youwei

PERSONAL NAME - SECONDARY RESPONSIBILITY

El Ghaoui, Laurent

CORPORATE BODY NAME - SECONDARY RESPONSIBILITY

UC Berkeley

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

p

[Thesis]
276903

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival