• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Convex analysis and nonlinear geometric elliptic equations.

پدید آورنده
Ilya J Bakelman

موضوع

رده
QA331
.
5
I493
2012

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
3642698816
(Number (ISBN
9783642698811

NATIONAL BIBLIOGRAPHY NUMBER

Number
b572865

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Convex analysis and nonlinear geometric elliptic equations.
General Material Designation
[Book]
First Statement of Responsibility
Ilya J Bakelman

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
[Place of publication not identified]
Name of Publisher, Distributor, etc.
Springer
Date of Publication, Distribution, etc.
2012

CONTENTS NOTE

Text of Note
I. Elements of Convex Analysis.- 1. Convex Bodies and Hypersurfaces.- 1. Convex Sets in Finite-Dimensional Euclidean Spaces.- 1.1. Main Definition.- 1.2. Linear and Convex Operations with Convex Sets. Convex Hull.- 1.3. The Properties of Convex Sets in Linear Topological Spaces.- 1.4. Euclidean Space En.- 1.5. The Simple Figures in En.- 1.6. Spherical Convex Sets.- 1.7. Starshapedness of Convex Bodies.- 1.8. Asymptotic Cone.- 1.9. Complete Convex Hypersurfaces in En+1.- 2. Supporting Hyperplanes.- 2.1. Supporting Hyperplanes. The Separability Theorem.- 2.2. The Main Properties of Supporting Hyperplanes.- 3. Convex Hypersurfaces and Convex Functions.- 3.1. Convex Hypersurfaces and Convex Functions.- 3.2. Test of Convexity of Smooth Functions.- 3.3. Convergence of Convex Functions.- 3.4. Convergence in Topological Spaces.- 3.5. Convergence of Convex Bodies and Convex Hypersurfaces.- 4. Convex Polyhedra.- 4.1. Definitions. Description of Convex Polyhedra by the Convex Hull of Their Vertices.- 4.2. Convex Hull of a Finite System of Points.- 4.3. Approximation of Closed Convex Hypersurfaces by Closed Convex Polyhedra.- 5. Integral Gaussian Curvature.- 5.1. Spherical Mapping and the Integral Gaussian Curvature.- 5.2. The Convergence of Integral Gaussian Curvatures.- 5.3. Infinite Convex Hypersurfaces.- 6. Supporting Function.- 6.1. Definition and Main Properties.- 6.2. Differential Geometry of Supporting Function.- 2. Mixed Volumes. Minkowski Problem. Selected Global Problems in Geometric Partial Differential Equations.- 7. The Minkowski Mixed Volumes.- 7.1. Linear Combinations of Sets in En+l.- 7.2. Exercises and Problems to Subsection 7.1.- 7.3. Minkowski Mixed Volumes for Convex Polyhedra.- 7.4. The Minkowski Mixed Volumes for General Bounded Convex Bodies.- 7.5. The Brunn-Minkowski Theorem. The Minkowski Inequalities.- 7.6. Alexandrov's and Fenchel's Inequalities.- 8. Selected Global Problems in Geometric Partial Differential Equations.- 8.1. Minkowski's Problem for Convex Polyhedra in En+1.- 8.2. The Classical Minkowski Theorem.- 8.3. General Elliptic Operators and Equations.- 8.4. Linear Elliptic Operators and Equations.- 8.5. Quasilinear Elliptic Operators and Equations.- 8.6. The Classical Monge-Ampere Equations.- 8.7. Differential Equations in Global Problems of Differential Geometry.- 8.8. The Classical Maximum Principles for General Elliptic Equations.- 8.9. Hopf's Maximum Principle for Uniformly Elliptic Linear Equations.- 8.10. Uniqueness Theorem for General Nonlinear Elliptic Equations.- 8.11. The Maximum Principle for Divergent Quasilinear Elliptic Equations.- 8.12. Uniqueness Theorem for Isometric Embeddings of Two-dimensional Riemannian Metrics in E3.- II. Geometric Theory of Elliptic Solutions of Monge-Ampere Equations.- 3. Generalized Solutions of N-Dimensional Monge-Ampere Equations.- 9. Normal Mapping and R-Curvature of Convex Functions.- 9.1. Some Notation.- 9.2. Normal Mapping.- 9.3. Convergence Lemma of Supporting Hyperplanes.- 9.4. Main Properties of the Normal Mapping of a Convex Hypersurface.- 9.5. Proofs.- 9.6. R -curvature of convex functions.- 9.7. Weak convergence of R-curvatures.- 10. The Properties of Convex Functions Connected with Their R-Curvature.- 10.1. The Comparison and Uniqueness Theorems.- 10.2. Geometric Lemmas and Estimates.- 10.3. The Border of a Convex Function.- 10.4. Convergence of Convex Functions in a Closed Convex Domain. Compactness Theorems.- 11. Geometric Theory of the Monge-Ampere Equations det (uij) = ?(x)/R(Du).- 11.1. Introduction. Obstructions and Necessary Conditions of Solvability for the Dirichlet Problem.- 11.2. Generalized and Weak Solutions for Equation (11.1).- 11.3. The Dirichlet Problem in the Set of Convex Functions Q(A1,A2,...,Ak).- 11.4. Existence and Uniqueness of Weak Solutions of the Dirichlet Problem for Monge-Ampere Equations det(uij) = ?( x)/R (Du).- 11.5. The Inverse Operator for the Dirichlet Problem.- 11.6. Hypersurfaces with Prescribed Gaussian Curvature.- 12. The Dirichlet Problem for Elliptic Solutions of Monge-Ampere Equations Det(uij) = f(x,u, Du).- 12.1. The First Main Existence Theorem for the Dirichlet Problem (12.1-2).- 12.2. Existence of at Least One Generalized Solution of the Dirichlet Problem for Equations det (uij) = f (x,u,Du).- 12.3. Existence of Several Different Generalized Solutions for the Dirichlet Problem (12.23-24).- 4. Variational Problems and Generalized Elliptic Solutions of Monge-Ampere Equations.- 13. Introduction. The Main Functional.- 13.1. Statement of Problems.- 13.2. Preliminary Considerations.- 13.3. The Functional IH(u) and its Properties.- 14. Variational Problem for the Functional IH(u).- 14.1. Bilateral Estimates for IH (u).- 14.2. Main Theorem about the Functional IH(u).- 15. Dual Convex Hypersurfaces and Euler's Equation.- 15.1. Special Map on the Hemisphere.- 15.2. Dual Convex Hypersurfaces.- 15.3. Expression of the Functional IH(u)by Means of Dual Convex Hypersurfaces.- 15.4. Expression of the Variation of IH(u).- 5. Non-Compact Problems for Elliptic Solutions of Monge-Ampere Equations.- 16. Introduction. The Statement of the Second Boundary Value Problem.- 16.1. Asymptotic Cone of Infinite Complete Convex Hypersurfaces.- 16.2. The Statement of the Second Boundary Value Problem.- 17. The Second Boundary Value Problem for Monge-Ampere Equations det

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA331
.
5
Book number
I493
2012

PERSONAL NAME - PRIMARY RESPONSIBILITY

Ilya J Bakelman

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Ilya J Bakelman

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival