• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Algorithms in combinatorial geometry

پدید آورنده
Herbert Edelsbrunner.

موضوع
Algorytmy.,Geometria kombinatoryczna.

رده
QA167
.
H473
9999

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
3642615686
(Number (ISBN
3642648738
(Number (ISBN
9783642615689
(Number (ISBN
9783642648731

NATIONAL BIBLIOGRAPHY NUMBER

Number
b571822

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Algorithms in combinatorial geometry
General Material Designation
[Book]
First Statement of Responsibility
Herbert Edelsbrunner.

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
Berlin
Name of Publisher, Distributor, etc.
Springer-Verlag, [post
Date of Publication, Distribution, etc.
2005], cop. 1987.

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
XV, [1], 423 s. : il. ; 24 cm.

SERIES

Series Title
EATCS Monographs on Theoretical Computer Science, vol. 10.

GENERAL NOTES

Text of Note
Na dok. data cop. 1987, data ustalona na podst 13-ISBN: [post 2005].

CONTENTS NOTE

Text of Note
I Combinatorial Geometry.- 1 Fundamental Concepts in Combinatorial Geometry.- 1.1. Arrangements of Hyperplanes.- 1.2. Counting Faces and Incidences.- 1.3. Combinatorial Equivalence.- 1.4. Configurations of Points.- 1.5. Sylvester's Problem.- 1.6. Convex Polytopes and Convex Polyhedra.- 1.7. Zonotopes.- 1.8. Voronoi Diagrams.- 1.9. Exercises and Research Problems.- 1.10. Bibliographic Notes.- 2 Permutation Tables.- 2.1. Circular Sequences.- 2.2. Encoding Arrangements and Configurations.- 2.3. A Circularly Non-Realizable 5-Sequence.- 2.4. Arrangements of Pseudo-Lines.- 2.5. Some Combinatorial Problems in the Plane.- 2.6. Exercises and Research Problems.- 2.7. Bibliographic Notes.- 3 Semispaces of Configurations.- 3.1. Semispaces and Arrangements.- 3.2. k-Sets and Levels in Arrangements.- 3.3. A Lower Bound on the Number of Bisections in the Plane.- 3.4. Lower Bounds on the Number of k-Sets in the Plane.- 3.5. Extensions to Three and Higher Dimensions..- 3.6. Semispaces and Circular Sequences.- 3.7. An Upper Bound on the Number of k-Sets in the Plane.- 3.8. Exercises and Research Problems.- 3.9. Bibliographic Notes.- 4 Dissections of Point Sets.- 4.1. Centerpoints.- 4.2. Ham-Sandwich Cuts.- 4.3. Erasing Subdivisions in the Plane.- 4.4. Simultaneous Four-Section in Three Dimensions.- 4.5. Erasing Cell Complexes in Three Dimensions.- 4.6. Generalizations to Higher Dimensions.- 4.7. Exercises and Research Problems.- 4.8. Bibliographic Notes.- 5 Zones in Arrangements.- 5.1. Supported Cells, Zones, and Duality.- 5.2. Sweeping a Simple Arrangement.- 5.3. Tight Bounds in the Plane.- 5.4. Asymptotically Tight Bounds in d Dimensions.- 5.5. An Implication of the Result on Zones.- 5.6. Exercises and Research Problems.- 5.7. Bibliographic Notes.- 6 The Complexity of Families of Cells.- 6.1. Definitions and Preliminary Results.- 6.2. The Complexity of a Polytope.- 6.2.1. Cyclic Polytopes.- 6.2.2. Euler's Relation.- 6.2.3. The Dehn-Sommerville Relations.- 6.2.4. An Asymptotic Version of the Upper Bound Theorem.- 6.3. The Complexity of a Few Cells in Two Dimensions.- 6.4. Lower Bounds for Moderately Many Cells.- 6.5. Lower Bounds for Many Cells.- 6.6. Upper Bounds for Many Cells.- 6.7. Exercises and Research Problems.- 6.8. Bibliographic Notes.- II Fundamental Geometric Algorithms.- 7 Constructing Arrangements.- 7.1. Representing an Arrangement in Storage.- 7.2. The Incremental Approach.- 7.3. Initiating the Construction.- 7.4. Geometric Preliminaries.- 7.5. Incrementing the Arrangement.- 7.6. The Analysis of the Algorithm.- 7.7. Exercises and Research Problems.- 7.8. Bibliographie Notes.- 8 Constructing Convex Hulls.- 8.1. Convex Hulls and Duality.- 8.2. The Incidence Graph of a Convex Polytope.- 8.3. Two Algorithms in Two Dimensions.- 8.3.1. The Beneath-Beyond Method.- 8.3.2. Using Divide-and-Conquer.- 8.4. The Beneath-Beyond Method in d Dimensions.- 8.4.1. Geometric Preliminaries.- 8.4.2. Towards the Incrementation of the Convex Hull.- 8.4.3. Pyramidal Updates.- 8.4.4. Non-Pyramidal Updates.- 8.4.5. The Analysis of the Algorithm.- 8.5. Divide-and-Conquer in Three Dimensions.- 8.5.1. Coping with Degenerate Cases.- 8.5.2. The Upgraded Incidence Graph.- 8.5.3. Geometric Preliminaries.- 8.5.4. Wrapping Two Convex Polytopes.- 8.5.5. The Analysis of the Algorithm.- 8.6. Exercises and Research Problems.- 8.7. Bibliographic Notes.- 9 Skeletons in Arrangements.- 9.1. Skeletons and Eulerian Tours.- 9.2. Towards the Construction of a Skeleton.- 9.3. Constructing a Skeleton in a Simple Arrangement.- 9.4. Simulating Simplicity.- 9.4.1. A Conceptual Perturbation.- 9.4.2. Simulating the Perturbation.- 9.4.3. Computing the Sign of a Determinant of Polynomials..- 9.5. Penetration Search and Extremal Queries.- 9.5.1. Extremal Queries in the Plane.- 9.5.2. Extremal Queries in Three Dimensions: the Data Structure.- 9.5.3. Extremal Queries in Three Dimensions: the Query Algorithm.- 9.5.4. Dynamic Extremal Search.- 9.6. Exercises and Research Problems.- 9.7. Bibliographic Notes.- 10 Linear Programming..- 10.1. The Solution to a Linear Program.- 10.2. Linear Programming and Duality.- 10.3. Linear Programming in Two Dimensions.- 10.3.1. Prune: Eliminate Redundant Half-Planes.- 10.3.2. Bisect: Decrease the Range of the Linear Program.- 10.3.3. Find_Test: Determine the Median.- 10.3.4. Assembling the Algorithm.- 10.4. Linear Programming in Three and Higher Dimensions.- 10.4.1. The Geometry of Pruning.- 10.4.2. The Geometry of Bisecting.- 10.4.3. Searching Lines in the Plane.- 10.4.4. The Geometry of Searching.- 10.4.5. The Overall Algorithm.- 10.5. Exercises and Research Problems.- 10.6. Bibliographic Notes.- 11 Planar Point Location Search.- 11.1. Euler's Relation for Planar Graphs.- 11.2. The Geometry of Monotone Subdivisions.- 11.3. A Tree of Separators for Point Location.- 11.4. Representing a Plane Subdivision.- 11.5. Constructing a Family of Separators.- 11.6. Optimal Search by Connecting Separators.- 11.7. Constructing the Layered DAG.- 11.8. Refining Non-Monotone Subdivisions.- 11.9. Exercises and Research Problems.- 11.10. Bibliographic Notes.- III Geometric and Algorithmic Applications.- 12 Problems for Configurations and Arrangements.- 12.1. Largest Convex Subsets.- 12.2. The Visibility Graph for Line Segments.- 12.3. Degeneracies in Configurations.- 12.4. Minimum Measure Simplices.- 12.5. Computing Ranks: Sorting in d Dimensions?.- 12.6. A Vector-Sum Maximization Problem.- 12.7. Exercises and Research Problems.- 12.8. Bibliographic Notes.- 13 Voronoi Diagrams.- 13.1. Classical Voronoi Diagrams.- 13.2. Applications in the Plane.- 13.2.1. The Post Office Problem.- 13.2.2. Triangulating Point Sets.- 13.2.3. Delaunay Triangulations from Convex Hulls.- 13.2.4. Finding Closest Neighbors.- 13.2.5. Minimum Spanning Trees.- 13.2.6. Shapes of Point Sets.- 13.3. Higher-Order Voronoi Diagrams.- 13.4. The Complexity of Higher-Order Voronoi Diagrams.- 13.5. Constructing Higher-Order Voronoi Diagrams.- 13.6. Power Diagrams.- 13.7. Exercises and Research Problems.- 13.8. Bibliographic Notes.- 14 Separation and Intersection in the Plane.- 14.1. Constructing Ham-Sandwich Cuts in Two Dimensions.- 14.1.1. Ham-Sandwich Cuts and Duality.- 14.1.2. Testing a Line.- 14.1.3. Finding Test Lines and Pruning.- 14.1.4. The Overall Algorithm.- 14.2. Answering Line Queries.- 14.2.1. The Ham-Sandwich Tree.- 14.2.2. Point Location in Arrangements.- 14.3. A Self-Dual Intersection Problem.- 14.4. Triangular Range Queries.- 14.5. Exercises and Research Problems.- 14.6. Bibliographic Notes.- 15 Paradigmatic Design of Algorithms.- 15.1. The Problem: Stabbing Line Segments in the Plane.- 15.2. Geometric Transformation.- 15.3. Combinatorial Analysis.- 15.4. Divide-and-Conquer.- 15.5. Incremental Construction.- 15.6. Prune-and-Search.- 15.7. The Locus Approach.- 15.8. Dynamization by Decomposition.- 15.9. Exercises and Research Problems.- 15.10. Bibliographic Notes.- References.- Appendix A Definitions.- Appendix B Notational Conventions.

TOPICAL NAME USED AS SUBJECT

Algorytmy.
Geometria kombinatoryczna.

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA167
Book number
.
H473
9999

PERSONAL NAME - PRIMARY RESPONSIBILITY

Herbert Edelsbrunner.

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Herbert Edelsbrunner
Springer-Verlag (Berlin)

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival