Sample efficient multiagent learning in the presence of Markovian agents /
General Material Designation
[Book]
First Statement of Responsibility
Doran Chakraborty
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online resource (xvii, 147 pages)
SERIES
Series Title
Studies in computational intelligence ;
Volume Designation
volume 523
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references
CONTENTS NOTE
Text of Note
Introduction -- Background -- Learn or Exploit in Adversary Induced Markov Decision Processes -- Convergence, Targeted Optimality and Safety in Multiagent Learning -- Maximizing -- Targeted Modeling of Markovian agents -- Structure Learning in Factored MDPs -- Related Work -- Conclusion and Future Work
0
SUMMARY OR ABSTRACT
Text of Note
The problem of Multiagent Learning (or MAL) is concerned with the study of how intelligent entities can learn and adapt in the presence of other such entities that are simultaneously adapting. The problem is often studied in the stylized settings provided by repeated matrix games (a.k.a. normal form games). The goal of this book is to develop MAL algorithms for such a setting that achieve a new set of objectives which have not been previously achieved. In particular this book deals with learning in the presence of a new class of agent behavior that has not been studied or modeled before in a MAL context: Markovian agent behavior. Several new challenges arise when interacting with this particular class of agents. The book takes a series of steps towards building completely autonomous learning algorithms that maximize utility while interacting with such agents. Each algorithm is meticulously specified with a thorough formal treatment that elucidates its key theoretical properties
OTHER EDITION IN ANOTHER MEDIUM
Title
Sample efficient multiagent learning in the presence of Markovian agents.