• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Several complex variables with connections to algebraic geometry and Lie groups /

پدید آورنده
Joseph L. Taylor

موضوع
Functions of several complex variables,Geometry, Algebraic,Algebraïsche meetkunde,Complexe variabelen,GEOMETRIA ALGÉBRICA,Lie-groepen

رده
QA331
.
7
.
T39
2002

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
082183178X
(Number (ISBN
9780821831786

NATIONAL BIBLIOGRAPHY NUMBER

Number
dltt

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Several complex variables with connections to algebraic geometry and Lie groups /
General Material Designation
[Book]
First Statement of Responsibility
Joseph L. Taylor

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
xvi, 507 pages ;
Dimensions
26 cm

SERIES

Series Title
Graduate studies in mathematics,
Volume Designation
v. 46
ISSN of Series
1065-7339 ;

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references (pages 497-499) and index

CONTENTS NOTE

Text of Note
Ch. 1. Selected Problems in One Complex Variable -- 1.1. Preliminaries -- 1.2. A Simple Problem -- 1.3. Partitions of Unity -- 1.4. The Cauchy-Riemann Equations -- 1.5. The Proof of Proposition 1.2.2 -- 1.6. The Mittag-Leffler and Weierstrass Theorems -- 1.7. Conclusions and Comments -- Ch. 2. Holomorphic Functions of Several Variables -- 2.1. Cauchy's Formula and Power Series Expansions -- 2.2. Hartog's Theorem -- 2.3. The Cauchy-Riemann Equations -- 2.4. Convergence Theorems -- 2.5. Domains of Holomorphy -- Ch. 3. Local Rings and Varieties -- 3.1. Rings of Germs of Holomorphic Functions -- 3.2. Hilbert's Basis Theorem -- 3.3. The Weierstrass Theorems -- 3.4. The Local Ring of Holomorphic Functions is Noetherian -- 3.5. Varieties -- 3.6. Irreducible Varieties -- 3.7. Implicit and Inverse Mapping Theorems -- 3.8. Holomorphic Functions on a Subvariety -- Ch. 4. The Nullstellensatz -- 4.1. Reduction to the Case of Prime Ideals -- 4.2. Survey of Results on Ring and Field Extensions -- 4.3. Hilbert's Nullstellensatz -- 4.4. Finite Branched Holomorphic Covers -- 4.5. The Nullstellensatz -- 4.6. Morphisms of Germs of Varieties -- Ch. 5. Dimension -- 5.1. Topological Dimension -- 5.2. Subvarieties of Codimension 1 -- 5.3. Krull Dimension -- 5.4. Tangential Dimension -- 5.5. Dimension and Regularity -- 5.6. Dimension of Algebraic Varieties -- 5.7. Algebraic vs. Holomorphic Dimension -- Ch. 6. Homological Algebra -- 6.1. Abelian Categories -- 6.2. Complexes -- 6.3. Injective and Projective Resolutions -- 6.4. Higher Derived Functors -- 6.5. Ext -- 6.6. The Category of Modules, Tor -- 6.7. Hilbert's Syzygy Theorem -- Ch. 7. Sheaves and Sheaf Cohomology -- 7.1. Sheaves -- 7.2. Morphisms of Sheaves -- 7.3. Operations on Sheaves -- 7.4. Sheaf Cohomology -- 7.5. Classes of Acyclic Sheaves -- 7.6. Ringed Spaces -- 7.7. De Rham Cohomology -- 7.8. Cech Cohomology -- 7.9. Line Bundles and Cech Cohomology -- Ch. 8. Coherent Algebraic Sheaves -- 8.1. Abstract Varieties -- 8.2. Localization -- 8.3. Coherent and Quasi-coherent Algebraic Sheaves -- 8.4. Theorems of Artin-Rees and Krull -- 8.5. The Vanishing Theorem for Quasi-coherent Sheaves -- 8.6. Cohomological Characterization of Affine Varieties -- 8.7. Morphisms -- Direct and Inverse Image -- 8.8. An Open Mapping Theorem -- Ch. 9. Coherent Analytic Sheaves -- 9.1. Coherence in the Analytic Case -- 9.2. Oka's Theorem -- 9.3. Ideal Sheaves -- 9.4. Coherent Sheaves on Varieties -- 9.5. Morphisms between Coherent Sheaves -- 9.6. Direct and Inverse Image -- Ch. 10. Stein Spaces -- 10.1. Dolbeault Cohomology -- 10.2. Chains of Syzygies -- 10.3. Functional Analysis Preliminaries -- 10.4. Cartan's Factorization Lemma -- 10.5. Amalgamation of Syzygies -- 10.6. Stein Spaces -- Ch. 11. Frechet Sheaves -- Cartan's Theorems -- 11.1. Topological Vector Spaces -- 11.2. The Topology of H(X) -- 11.3. Frechet Sheaves -- 11.4. Cartan's Theorems -- 11.5. Applications of Cartan's Theorems -- 11.6. Invertible Groups and Line Bundles -- 11.7. Meromorphic Functions -- 11.8. Holomorphic Functional Calculus -- 11.9. Localization -- 11.10. Coherent Sheaves on Compact Varieties -- 11.11. Schwartz's Theorem -- Ch. 12. Projective Varieties -- 12.1. Complex Projective Space -- 12.2. Projective Space as an Algebraic and a Holomorphic Variety -- 12.3. The Sheaves O(k) and H(k) -- 12.4. Applications of the Sheaves O(k) -- 12.5. Embeddings in Projective Space -- Ch. 13. Algebraic vs. Analytic -- Serre's Theorems -- 13.1. Faithfully Flat Ring Extensions -- 13.2. Completion of Local Rings -- 13.3. Local Rings of Algebraic vs. Holomorphic Functions -- 13.4. The Algebraic to Holomorphic Functor -- 13.5. Serre's Theorems -- 13.6. Applications -- Ch. 14. Lie Groups and Their Representations -- 14.1. Topological Groups -- 14.2. Compact Topological Groups -- 14.3. Lie Groups and Lie Algebras -- 14.4. Lie Algebras -- 14.5. Structure of Semisimple Lie Algebras -- 14.6. Representations of [actual symbol not reproducible][subscript 2]([Complex number system]) -- 14.7. Representations of Semisimple Lie Algebras -- 14.8. Compact Semisimple Groups -- Ch. 15. Algebraic Groups -- 15.1. Algebraic Groups and Their Representations -- 15.2. Quotients and Group Actions -- 15.3. Existence of the Quotient -- 15.4. Jordan Decomposition -- 15.5. Tori -- 15.6. Solvable Algebraic Groups -- 15.7. Semisimple Groups and Borel Subgroups -- 15.8. Complex Semisimple Lie Groups -- Ch. 16. The Borel-Weil-Bott Theorem -- 16.1. Vector Bundles and Induced Representations -- 16.2. Equivariant Line Bundles on the Flag Variety -- 16.3. The Casimir Operator -- 16.4. The Borel-Weil Theorem -- 16.5. The Borel-Weil-Bott Theorem -- 16.6. Consequences for Real Semisimple Lie Groups -- 16.7. Infinite Dimensional Representations
0

TOPICAL NAME USED AS SUBJECT

Functions of several complex variables
Geometry, Algebraic
Algebraïsche meetkunde
Complexe variabelen
GEOMETRIA ALGÉBRICA
Lie-groepen

DEWEY DECIMAL CLASSIFICATION

Number
515/
.
94
Edition
21

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA331
.
7
Book number
.
T39
2002

PERSONAL NAME - PRIMARY RESPONSIBILITY

Taylor, Joseph L.,1941-

ORIGINATING SOURCE

Date of Transaction
20160712071453.0

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival