• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Bayesian time series models /

پدید آورنده
edited by David Barber, A. Taylan Cemgil, Silvia Chiappa

موضوع
Bayesian statistical decision theory,Time-series analysis

رده
QA280
.
B39
2011

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
0521196760
(Number (ISBN
9780521196765

NATIONAL BIBLIOGRAPHY NUMBER

Number
b427303

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Bayesian time series models /
General Material Designation
[Book]
First Statement of Responsibility
edited by David Barber, A. Taylan Cemgil, Silvia Chiappa

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
xiii, 417 pages :
Other Physical Details
illustrations,
Dimensions
26 cm

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references and index

CONTENTS NOTE

Text of Note
Machine generated contents note: Contributors; Preface; 1. Inference and estimation in probabilistic time series models David Barber, A. Taylan Cemgil and Silvia Chiappa; Part I. Monte Carlo: 2. Adaptive Markov chain Monte Carlo: theory and methods Yves Atchade;, Gersende Fort, Eric Moulines and Pierre Priouret; 3. Auxiliary particle filtering: recent developments Nick Whiteley and Adam M. Johansen; 4. Monte Carlo probabilistic inference for diffusion processes: a methodological framework Omiros Papaspiliopoulos; Part II. Deterministic Approximations: 5. Two problems with variational expectation maximisation for time series models Richard Eric Turner and Maneesh Sahani; 6. Approximate inference for continuous-time Markov processes Ce;dric Archambeau and Manfred Opper; 7. Expectation propagation and generalised EP methods for inference in switching linear dynamical systems Onno Zoeter and Tom Heskes; 8. Approximate inference in switching linear dynamical systems using Gaussian mixtures David Barber; Part III. Change-Point Models: 9. Analysis of change-point models Idris A. Eckley, Paul Fearnhead and Rebecca Killick; Part IV. Multi-Object Models: 10. Approximate likelihood estimation of static parameters in multi-target models Sumeetpal S. Singh, Nick Whiteley and Simon J. Godsill; 11. Sequential inference for dynamically evolving groups of objects Sze Kim Pang, Simon J. Godsill, Jack Li, François Septier and Simon Hill; 12. Non-commutative harmonic analysis in multi-object tracking Risi Kondor; 13. Physiological monitoring with factorial switching linear dynamical systems John A. Quinn and Christopher K. I. Williams; Part V. Non-Parametric Models: 14. Markov chain Monte Carlo algorithms for Gaussian processes Michalis K. Titsias, Magnus Rattray and Neil D. Lawrence; 15. Non-parametric hidden Markov models Jurgen Van Gael and Zoubin Ghahramani; 16. Bayesian Gaussian process models for multi-sensor time series prediction Michael A. Osborne, Alex Rogers, Stephen J. Roberts, Sarvapali D. Ramchurn and Nick R. Jennings; Part VI. Agent Based Models: 17. Optimal control theory and the linear Bellman equation Hilbert J. Kappen; 18. Expectation-maximisation methods for solving (PO)MDPs and optimal control problems Marc Toussaint, Amos Storkey and Stefan Harmeling; Index
8

SUMMARY OR ABSTRACT

Text of Note
"Time series appear in a variety of disciplines, from finance to physics, computer science to biology. The origins of the subject and diverse applications in the engineering and physics literature at times obscure the commonalities in the underlying models and techniques. A central aim of this book is an attempt to make modern time series techniques accessible to a broad range of researchers, based on the unifying concept of probabilistic models. These techniques facilitate access to the modern time series literature, including financial time series prediction, video-tracking, music analysis, control and genetic sequence analysis. A particular feature of the book is that it brings together leading researchers that span the more traditional disciplines of statistics, control theory, engineering and signal processing,to the more recent area machine learning and pattern recognition"--
Text of Note
"'What's going to happen next?' Time series data hold the answers, and Bayesian methods represent the cutting edge in learning what they have to say. This ambitious book is the first unified treatment of the emerging knowledge-base in Bayesian time series techniques. Exploiting the unifying framework of probabilistic graphical models, the book covers approximation schemes, both Monte Carlo and deterministic, and introduces switching, multi-object, non-parametric and agent-based models in a variety of application environments. It demonstrates that the basic framework supports the rapid creation of models tailored to specific applications and gives insight into the computational complexity of their implementation. The authors span traditional disciplines such as statistics and engineering and the more recently established areas of machine learning and pattern recognition. Readers with a basic understanding of applied probability, but no experience with time series analysis, are guided from fundamental concepts to the state-of-the-art in research and practice"--

TOPICAL NAME USED AS SUBJECT

Bayesian statistical decision theory
Time-series analysis

DEWEY DECIMAL CLASSIFICATION

Number
519
.
5/5
Edition
22

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA280
Book number
.
B39
2011

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Barber, David,1968-
Cemgil, Ali Taylan
Chiappa, Silvia

ORIGINATING SOURCE

Date of Transaction
20110903060455.0
Cataloguing Rules (Descriptive Conventions))
rda

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival