• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
An Introduction to Models and Decompositions in Operator Theory

پدید آورنده
by Carlos S. Kubrusly.

موضوع
Mathematics.,Operator theory.

رده

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
9781461219989
(Number (ISBN
9781461273745

NATIONAL BIBLIOGRAPHY NUMBER

Number
b402848

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
An Introduction to Models and Decompositions in Operator Theory
General Material Designation
[Book]
First Statement of Responsibility
by Carlos S. Kubrusly.

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
Boston, MA :
Name of Publisher, Distributor, etc.
Imprint: Birkhäuser,
Date of Publication, Distribution, etc.
1997.

CONTENTS NOTE

Text of Note
0. Preliminaries -- 0.1. Hilbert-Space Operators -- 0.2. Spectrum of an Operator -- 0.3. Convergence and Stability -- 0.4. Projections and Isometries -- 0.5. Invariant Subspaces -- 0.6. Spectral Theorem -- 1. Equivalence -- 1.1. Parts -- 1.2. Norms -- 2. Shifts -- 2.1. Unilateral Shifts -- 2.2. Bilateral Shifts -- 3. Contractions -- 3.1. The Strong Limits of {T*nTn} and {TnT*n} -- 3.2. The Isometry V on R(A)- -- 4. Quasisimilarity -- 4.1. Invariant Subspaces -- 4.2. Hyperinvariant Subspaces -- 4.3. Contractions Quasisimilar to a Unitary Operator -- 5. Decompositions -- 5.1. Nagy-Foia?-Langer Decomposition -- 5.2. von Neumann-Wold Decomposition -- 5.3. A Decomposition for Contractions with A = A2 -- 6. Models -- 6.1. Rota's Model -- 6.2. de Branges-Rovnyak Refinement -- 6.3. Durszt Extension -- 7. Applications -- 7.1. A Pattern for Contractions -- 7.2. Foguel Decomposition -- 8. Similarity -- 8.1. Power Boundedness -- 8.2. Weak and Strong Stability -- References.
0

SUMMARY OR ABSTRACT

Text of Note
By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters.

OTHER EDITION IN ANOTHER MEDIUM

International Standard Book Number
9781461273745

PIECE

Title
Springer eBooks

TOPICAL NAME USED AS SUBJECT

Mathematics.
Operator theory.

PERSONAL NAME - PRIMARY RESPONSIBILITY

Kubrusly, Carlos S.

CORPORATE BODY NAME - ALTERNATIVE RESPONSIBILITY

SpringerLink (Online service)

ORIGINATING SOURCE

Date of Transaction
20190307154600.0

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival