edited by Bernard Dieny, Ronald B. Goldfarb, Kyung-Jin Lee
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Piscataway, NJ
Name of Publisher, Distributor, etc.
IEEE Press
Date of Publication, Distribution, etc.
2017.
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
xviii, 242 p.
INTERNAL BIBLIOGRAPHIES/INDEXES NOTE
Text of Note
Includes bibliographical references and index
CONTENTS NOTE
Text of Note
Basic Spintronic Transport Phenomena / Nicolas Locatelli, Vincent Cros -- Magnetic Properties of Materials for MRAM / Shinji Yuasa -- Micromagnetism Applied to Magnetic Nanostructures / Liliana D Buda-Prejbeanu -- Magnetization Dynamics / William E Bailey -- Magnetic Random-Access Memory / Bernard Dieny, I Lucian Prejbeanu -- Magnetic Back-End Technology / Michael C Gaidis -- Beyond MRAM: Nonvolatile Logic-in-Memory VLSI / Takahiro Hanyu, Tetsuo Endoh, Shoji Ikeda, Tadahiko Sugibayashi, Naoki Kasai, Daisuke Suzuki, Masanori Natsui, Hiroki Koike, Hideo Ohno -- Appendix: Units for Magnetic Properties
0
SUMMARY OR ABSTRACT
Text of Note
Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durability. Although toggle-MRAM is currently a commercial product, it is clear that future developments in MRAM will be based on spin-transfer torque, which makes use of electrons{223́}¿ spin angular momentum instead of their charge. MRAM will require an amalgamation of magnetics and microelectronics technologies. However, researchers and developers in magnetics and in microelectronics attend different technical conferences, publish in different journals, use different tools, and have different backgrounds in condensed-matter physics, electrical engineering, and materials science. This book is an introduction to MRAM for microelectronics engineers written by specialists in magnetic materials and devices. It presents the basic phenomena involved in MRAM, the materials and film stacks being used, the basic principles of the various types of MRAM (toggle and spin-transfer torque; magnetized in-plane or perpendicular-to-plane), the back-end magnetic technology, and recent developments toward logic-in-memory architectures. It helps bridge the cultural gap between the microelectronics and magnetics communities