An Invitation to Analytic Combinatorics in Several Variables :
First Statement of Responsibility
/ Stephen Melczer
.PUBLICATION, DISTRIBUTION, ETC
Place of Publication, Distribution, etc.
Cham
Name of Publisher, Distributor, etc.
: Springer International Publishing
Date of Publication, Distribution, etc.
, 2021
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
1 online ressource (XVIII, 418 p. 45 illus., 36 illus. in color)
SERIES
Series Title
Texts and Monographs in Symbolic Computation Series
CONTENTS NOTE
Text of Note
Intro -- Foreword -- Preface -- Contents -- List of Symbols -- Chapter 1 Introduction -- 1.1 Algorithmic Combinatorics -- 1.1.1 Analytic Methods for Asymptotics -- 1.1.2 Lattice Path Enumeration -- 1.2 Diagonals and Analytic Combinatorics in Several Variables -- 1.2.1 The Basics of Analytic Combinatorics in Several Variables -- 1.2.2 A History of Analytic Combinatorics in Several Variables -- 1.3 Organization -- References -- Part I Background and Motivation -- Chapter 2 Generating Functions and Analytic Combinatorics -- 2.1 Analytic Combinatorics in One Variable2.1.1 AWorked Example: Alternating Permutations -- 2.1.2 The Principles of Analytic Combinatorics -- 2.1.3 The Practice of Analytic Combinatorics -- 2.2 Rational Power Series -- 2.3 Algebraic Power Series -- 2.4 D-Finite Power Series -- 2.4.1 An Open Connection Problem -- 2.5 D-Algebraic Power Series -- Appendix on Complex Analysis -- Problems -- References -- Chapter 3 Multivariate Series and Diagonals -- 3.1 Complex Analysis in Several Variables -- 3.1.1 Singular Sets of Multivariate Functions -- 3.1.2 Domains of Convergence for Multivariate Power Series -- 3.2 Diagonals3.2.1 Properties of Diagonals -- 3.2.2 Representing Series Using Diagonals -- 3.3 Multivariate Laurent Expansions and Other Series Operators -- 3.3.1 Convergent Laurent Series and Amoebas -- 3.3.2 Diagonals and Non-Negative Extractions of Laurent Series -- 3.4 Sources of Rational Diagonals -- 3.4.1 Binomial Sums -- 3.4.2 Irrational Tilings -- 3.4.3 Period Integrals -- 3.4.4 Kronecker Coefficients -- 3.4.5 Positivity Results and Special Functions -- 3.4.6 The Ising Model and Algebraic Diagonals -- 3.4.7 Other Sources of Examples -- Problems -- ReferencesChapter 4 Lattice Path Enumeration, the Kernel Method, and Diagonals -- 4.1 Walks in Cones and The Kernel Method -- 4.1.1 Unrestricted Walks -- 4.1.2 A Deeper Kernel Analysis: One-Dimensional Excursions -- 4.1.3 Walks in a Half-Space -- 4.1.4 Walks in the Quarter-plane -- 4.1.5 OrthantWalks Whose Step Sets Have Symmetries -- 4.2 Historical Perspective -- 4.2.1 The Kernel Method -- 4.2.2 Recent History of Lattice Paths in Orthants -- Problems -- References -- Part II Smooth ACSV and Applications -- Chapter 5 The Theory of ACSV for Smooth Points -- 5.1 Central Binomial Coefficient Asymptotics5.1.1 Asymptotics in General Directions -- 5.1.2 Asymptotics of Laurent Coefficients -- 5.2 The Theory of Smooth ACSV -- 5.3 The Practice of Smooth ACSV -- 5.3.1 Existence of Minimal Critical Points -- 5.3.2 Dealing with Minimal Points that are not Critical -- 5.3.3 Perturbations of Direction and a Central Limit Theorem -- 5.3.4 Genericity of Assumptions -- Problems -- References -- Chapter 6 Application: Lattice Walks and Smooth ACSV -- 6.1 Asymptotics of Highly Symmetric Orthant Walks -- 6.1.1 Asymptotics for All Walks in an Orthant -- 6.1.2 Asymptotics for Boundary Returns