عرض القائمة
الرئیسیة
البحث المتقدم
قائمة المکتبات
حول الموقع
اتصل بنا
نشأة
عنوان
Cryptography and secure communication
پدید آورنده
Blahut, Richard E.
موضوع
، Data encryption )Computer science(,، Cryptography,Security measures ، Telecommunication
رده
QA
76
.
9
.
A25
.
B569
کتابخانه
کتابخانه مرکزی دانشگاه صنعتی همدان
محل استقرار
استان:
همدان
ـ شهر:
همدان
تماس با کتابخانه :
38411100
-
081
author
Cryptography and secure communication
new york
university press
2014
xvii, 587 pages : illustrations ; 26 cm
Includes bibliographical references )pages 558-575( and index
Richard E. Blahut
1
Machine generated contents note: 1.Introduction -- 1.1.Classical cryptography -- 1.2.Notions of cryptographic secrecy -- 1.3.Block ciphers -- 1.4.Stream ciphers -- 1.5.Public-key cryptography -- 1.6.Iterated and cascade ciphers -- 1.7.Cryptanalysis -- 1.8.Implementation attacks -- 1.9.Complexity theory -- 1.01.Authentication and identification -- 1.11.Ownership protection -- 1.21.Covert communications -- 1.31.History of information protection -- 2.The integers -- 2.1.Basic number theory -- 2.2.The euclidean algorithm -- 2.3.Prime fields -- 2.4.Quadratic residues -- 2.5.Quadratic reciprocity -- 2.6.The Jacobi symbol -- 2.7.Primality testing -- 2.8.The Fermat algorithm -- 2.9.The Solovay--Strassen algorithm -- 2.01.The Miller--Rabin algorithm -- 2.11.Factoring of integers -- 2.21.The Pollard algorithm for factoring -- 2.31.Square roots in a prime field -- 3.Cryptography based on the integer ring -- 3.1.Biprime cryptography -- 3.2.Implementing biprime cryptography --Machine generated contents note: 1.Introduction -- 1.1.Classical cryptography -- 1.2.Notions of cryptographic secrecy -- 1.3.Block ciphers -- 1.4.Stream ciphers -- 1.5.Public-key cryptography -- 1.6.Iterated and cascade ciphers -- 1.7.Cryptanalysis -- 1.8.Implementation attacks -- 1.9.Complexity theory -- 1.01.Authentication and identification -- 1.11.Ownership protection -- 1.21.Covert communications -- 1.31.History of information protection -- 2.The integers -- 2.1.Basic number theory -- 2.2.The euclidean algorithm -- 2.3.Prime fields -- 2.4.Quadratic residues -- 2.5.Quadratic reciprocity -- 2.6.The Jacobi symbol -- 2.7.Primality testing -- 2.8.The Fermat algorithm -- 2.9.The Solovay--Strassen algorithm -- 2.01.The Miller--Rabin algorithm -- 2.11.Factoring of integers -- 2.21.The Pollard algorithm for factoring -- 2.31.Square roots in a prime field -- 3.Cryptography based on the integer ring -- 3.1.Biprime cryptography -- 3.2.Implementing biprime cryptography --Machine generated contents note: 1.Introduction -- 1.1.Classical cryptography -- 1.2.Notions of cryptographic secrecy -- 1.3.Block ciphers -- 1.4.Stream ciphers -- 1.5.Public-key cryptography -- 1.6.Iterated and cascade ciphers -- 1.7.Cryptanalysis -- 1.8.Implementation attacks -- 1.9.Complexity theory -- 1.01.Authentication and identification -- 1.11.Ownership protection -- 1.21.Covert communications -- 1.31.History of information protection -- 2.The integers -- 2.1.Basic number theory -- 2.2.The euclidean algorithm -- 2.3.Prime fields -- 2.4.Quadratic residues -- 2.5.Quadratic reciprocity -- 2.6.The Jacobi symbol -- 2.7.Primality testing -- 2.8.The Fermat algorithm -- 2.9.The Solovay--Strassen algorithm -- 2.01.The Miller--Rabin algorithm -- 2.11.Factoring of integers -- 2.21.The Pollard algorithm for factoring -- 2.31.Square roots in a prime field -- 3.Cryptography based on the integer ring -- 3.1.Biprime cryptography -- 3.2.Implementing biprime cryptography --Machine generated contents note: 1.Introduction -- 1.1.Classical cryptography -- 1.2.Notions of cryptographic secrecy -- 1.3.Block ciphers -- 1.4.Stream ciphers -- 1.5.Public-key cryptography -- 1.6.Iterated and cascade ciphers -- 1.7.Cryptanalysis -- 1.8.Implementation attacks -- 1.9.Complexity theory -- 1.01.Authentication and identification -- 1.11.Ownership protection -- 1.21.Covert communications -- 1.31.History of information protection -- 2.The integers -- 2.1.Basic number theory -- 2.2.The euclidean algorithm -- 2.3.Prime fields -- 2.4.Quadratic residues -- 2.5.Quadratic reciprocity -- 2.6.The Jacobi symbol -- 2.7.Primality testing -- 2.8.The Fermat algorithm -- 2.9.The Solovay--Strassen algorithm -- 2.01.The Miller--Rabin algorithm -- 2.11.Factoring of integers -- 2.21.The Pollard algorithm for factoring -- 2.31.Square roots in a prime field -- 3.Cryptography based on the integer ring -- 3.1.Biprime cryptography -- 3.2.Implementing biprime cryptography --Machine generated contents note: 1.Introduction -- 1.1.Classical cryptography -- 1.2.Notions of cryptographic secrecy -- 1.3.Block ciphers -- 1.4.Stream ciphers -- 1.5.Public-key cryptography -- 1.6.Iterated and cascade ciphers -- 1.7.Cryptanalysis -- 1.8.Implementation attacks -- 1.9.Complexity theory -- 1.01.Authentication and identification -- 1.11.Ownership protection -- 1.21.Covert communications -- 1.31.History of information protection -- 2.The integers -- 2.1.Basic number theory -- 2.2.The euclidean algorithm -- 2.3.Prime fields -- 2.4.Quadratic residues -- 2.5.Quadratic reciprocity -- 2.6.The Jacobi symbol -- 2.7.Primality testing -- 2.8.The Fermat algorithm -- 2.9.The Solovay--Strassen algorithm -- 2.01.The Miller--Rabin algorithm -- 2.11.Factoring of integers -- 2.21.The Pollard algorithm for factoring -- 2.31.Square roots in a prime field -- 3.Cryptography based on the integer ring -- 3.1.Biprime cryptography -- 3.2.Implementing biprime cryptography --Machine generated contents note: 1.Introduction -- 1.1.Classical cryptography -- 1.2.Notions of cryptographic secrecy -- 1.3.Block ciphers -- 1.4.Stream ciphers -- 1.5.Public-key cryptography -- 1.6.Iterated and cascade ciphers -- 1.7.Cryptanalysis -- 1.8.Implementation attacks -- 1.9.Complexity theory -- 1.01.Authentication and identification -- 1.11.Ownership protection -- 1.21.Covert communications -- 1.31.History of information protection -- 2.The integers -- 2.1.Basic number theory -- 2.2.The euclidean algorithm -- 2.3.Prime fields -- 2.4.Quadratic residues -- 2.5.Quadratic reciprocity -- 2.6.The Jacobi symbol -- 2.7.Primality testing -- 2.8.The Fermat algorithm -- 2.9.The Solovay--Strassen algorithm -- 2.01.The Miller--Rabin algorithm -- 2.11.Factoring of integers -- 2.21.The Pollard algorithm for factoring -- 2.31.Square roots in a prime field -- 3.Cryptography based on the integer ring -- 3.1.Biprime cryptography -- 3.2.Implementing biprime cryptography --Machine generated contents note: 1.Introduction -- 1.1.Classical cryptography -- 1.2.Notions of cryptographic secrecy -- 1.3.Block ciphers -- 1.4.Stream ciphers -- 1.5.Public-key cryptography -- 1.6.Iterated and cascade ciphers -- 1.7.Cryptanalysis -- 1.8.Implementation attacks -- 1.9.Complexity theory -- 1.01.Authentication and identification -- 1.11.Ownership protection -- 1.21.Covert communications -- 1.31.History of information protection -- 2.The integers -- 2.1.Basic number theory -- 2.2.The euclidean algorithm -- 2.3.Prime fields -- 2.4.Quadratic residues -- 2.5.Quadratic reciprocity -- 2.6.The Jacobi symbol -- 2.7.Primality testing -- 2.8.The Fermat algorithm -- 2.9.The Solovay--Strassen algorithm -- 2.01.The Miller--Rabin algorithm -- 2.11.Factorin9.The Solovay--Strassen algorithm -- 2.01.The Miller--Rabin algorithm -- 2.11.Factoring of integers -- 2.21.The Pollard algorithm for factoring -- 2.31.Square roots in a prime field -- 3.Cryptography based on th
، Data encryption )Computer science(
، Cryptography
Security measures ، Telecommunication
QA
76
.
9
.
A25
.
B569
Blahut, Richard E.
AU
TI
الاقتراح / اعلان الخلل
×
الاقتراح / اعلان الخلل
×
تحذیر!
دقق في تسجیل المعلومات
اعلان الخلل
اقتراح