• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History
  • ورود / ثبت نام

عنوان
Numerical Methods For Solving Riesz Space Fractional Partial Differential Equations Based On Polynomial Interpolants

پدید آورنده
Ihsan Lateef Saeed,Lateef Saeed,

موضوع
Fractional kinetics equation, Riesz space fractional advection-dispersion equation, Piecewise linear interpolation, Spline interpolants, Crank-Nicolson scheme, Matrix analysis method, Stability and Convergence.,معادله کسری کینیتیک، معادله کسری فرارفت- پخش، درونیابی خطی قطعهای، درونیابی اسپلاین، روش کرانک نیکلسون، روش آنالیز ماتریسی، پایداری و همگرایی.

رده

کتابخانه
University of Tabriz Library, Documentation and Publication Center

محل استقرار
استان: East Azarbaijan ـ شهر: Tabriz

University of Tabriz Library, Documentation and Publication Center

تماس با کتابخانه : 04133294120-04133294118

NATIONAL BIBLIOGRAPHY NUMBER

Number
T27673

LANGUAGE OF THE ITEM

.Language of Text, Soundtrack etc
انگلیسی

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Numerical Methods For Solving Riesz Space Fractional Partial Differential Equations Based On Polynomial Interpolants
General Material Designation
Dissertation
First Statement of Responsibility
Ihsan Lateef Saeed

.PUBLICATION, DISTRIBUTION, ETC

Name of Publisher, Distributor, etc.
Mathematical Sciences
Date of Publication, Distribution, etc.
1401

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
122p.
Other Physical Details
cd

DISSERTATION (THESIS) NOTE

Dissertation or thesis details and type of degree
Ph.D.
Discipline of degree
Applied Mathematics
Date of degree
1401/08/10

SUMMARY OR ABSTRACT

Text of Note
In recent years, fractional calculus has been studied by many mathematicians andscientists. Scientists in the last decade found the fractional calculus useful in variousfields of science and engineering including fluid flow, biology, rheology, diffusivetransport, electrical networks, electromagnetic theory, probability potential theory,linear viscoelasticity, signal processing, control of engineering systems, viscoelasticpolymers, electrical circuits with reactance, electrochemistry, tracer fluid flows andelasticity. Fractional differential equations (FDEs) have important applications in manyareas like in the fields of viscoelastic materials, control theory, anomalous diffusion,signal processing, image filtering, electrochemical processes, fractal phenomena,polymer rheology, regular variation in thermodynamics, biophysics, blood flowphenomena, aerodynamics, electrodynamics of complex medium, viscoelasticity,bode analysis of feedback amplifiers, capacitor theory, electrical circuits, electroanalyticalchemistry, biology, control theory, fitting of experimental data.In most cases, fractional differential equations (FDEs) cannot be solved exactly,as a consequence, approximate and numerical techniques are playing an importantrole in identifying the solution behavior of such fractional equations and exploring theirapplications. The main objective of this thesis is to design new effective numericalmethods and supporting analysis, based on the finite difference method and splineinterpolation methods. In the second chapter, we design a new numerical method forthe Riesz space partial fractional differential equation that is a special case of thefractional kinetics equation. We utilize the piecewise linear interpolation polynomial toapproximate the Riesz fractional derivative. Next, we proposed, two numericalmethods based on the forward Euler and Crank-Nicolson methods for time, also linearinterpolation polynomial for space. Also, stability and convergence are proved. In thethird chapter, we consider the numerical solution of the Riesz space fractionaladvection-dispersion equation. First, the Riesz fractional derivative is approximatedwith respect to the space variable by using spline interpolation. Furthermore, we usethe Euler and the Crank-Nicolson schemes to approximate the time ordinaryderivative and get two different schemes. Second, using the matrix analysis method,we prove that the two difference schemes are unconditionally stable. Finally, somenumerical results are given, which demonstrate the effectiveness of the two differenceschemes.
Text of Note
معادلات دیفرانسیل کسری کاربردهای بسیاری در تمامی علوم از جمله پردازش تصویر، پردازش نویز، تئوریکنترل، بیو فیزیک، ترمودینامیک، پلیمر و غیره دارد. از آنجایی که حل تحلیلی معادلات دیفرانسیل کسریبسیار سخت و در مواقعی غیر ممکن است طراحی و ابداع روشهای عددی برای حل چنین معادلاتی بسیارحائز اهمیت میباشد. در این کار، اولا معادلات دیفرانسیل کسری جنبشی که برای نشان دادن فراینددینامیکی سیستمهای همیلتونی ارائه گردید، مورد مطالعه قرار میگیرد. ثانیا معادلات دیفرانسل کسریفرارفت – پخش با مشتق ریس در مکان با استفاده از درونیابی چندجملهایها بررسی خواهد گردید. در اینکار روشهای عددی مبتنی بر درونیابی چند جملهای طراحی خواهد گردید و پایداری و همگرایی روشها اثباتخواهد شد. در ادامه این روشها را برای حل معادلات دیفرانسیل جزئی با مشتق کسری بکار خواهیم برد.

OTHER VARIANT TITLES

Variant Title
روشهای عددی بر پایه چند جملهایهای درونیاب برای حل معادلات دیفرانسیل جزئی از مرتبه کسری با مشتق ریس مکانی

UNCONTROLLED SUBJECT TERMS

Subject Term
Fractional kinetics equation, Riesz space fractional advection-dispersion equation, Piecewise linear interpolation, Spline interpolants, Crank-Nicolson scheme, Matrix analysis method, Stability and Convergence.
Subject Term
معادله کسری کینیتیک، معادله کسری فرارفت- پخش، درونیابی خطی قطعهای، درونیابی اسپلاین، روش کرانک نیکلسون، روش آنالیز ماتریسی، پایداری و همگرایی.

PERSONAL NAME - PRIMARY RESPONSIBILITY

Entry Element
Lateef Saeed,
Part of Name Other than Entry Element
Ihsan
Relator Code
Producer

PERSONAL NAME - SECONDARY RESPONSIBILITY

Entry Element
Javidi,
Entry Element
Saedshoar Heris,
Part of Name Other than Entry Element
Mohammad
Part of Name Other than Entry Element
Mahdi
Relator Code
Thesis advisor
Relator Code
Consulting advisor

CORPORATE BODY NAME - SECONDARY RESPONSIBILITY

Entry Element
Tabriz

ORIGINATING SOURCE

Country
ایران
Agency
Central Libarary of Tabriz University

LOCATION AND CALL NUMBER

Call Number
دکتری پایاننامه QA37/2.S2 1401

ELECTRONIC LOCATION AND ACCESS

Electronic name
Ihsan Lateef Saeed
Contact for access assistance
عبادی

e

TL
276903

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival