• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History
  • ورود / ثبت نام

عنوان
Beginning partial differential equations

پدید آورنده
O'Neil, Peter V.

موضوع
، Differential equations, Partial

رده
QA
377
.
O54
2008

کتابخانه
Central Library and Documents Center of Industrial University of Khaje Nasiredin Toosi

محل استقرار
استان: Tehran ـ شهر: Tehran

Central Library and Documents Center of Industrial University of Khaje Nasiredin Toosi

تماس با کتابخانه : 88881052-88881042-021

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Beginning partial differential equations

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
Hoboken, N.J.
Name of Publisher, Distributor, etc.
Wiley-Interscience
Date of Publication, Distribution, etc.
c2008

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
ix, 477 p. : ill

SERIES

Other Title Information
Pure and applied mathematics

GENERAL NOTES

Text of Note
Includes index
Text of Note
Includes bibliographical references and index

NOTES PERTAINING TO TITLE AND STATEMENT OF RESPONSIBILITY

Text of Note
Peter V. O'Neil

CONTENTS NOTE

Text of Note
1. First Order Equations. Notation and Terminology. The Linear First Order Equation. The Significance of Characteristics. The Quasi-Linear Equation. 2. Linear Second Order Equations. Classification. The Hyperbolic Canonical Form. The Parabolic Canonical Form. The Elliptic Canonical Form. Some Equations of Mathematical Physics. The Second Order Cauchy Problem. Characteristics and the Cauchy Problem. Characteristics As Carriers of Discontinuities. 3. Elements of Fourier Analysis. Why Fourier Series?The Fourier Series of a Function. Convergence of Fourier Series. Sine and Cosine Expansions. The Fourier Integral. The Fourier Transform. Convolution. Fourier Sine and Cosine Transforms. 4. The Wave Equation. The Cauchy Problem and d'Alembert's Solution.d'Alembert's Solution As a Sum of Waves. The Characteristic Triangle. The Wave Equation on a Half-Line. A Problem on a Half-Line With Moving End. A Nonhomogeneous Problem on the Real Line. A General Problem on a Closed Interval. Fourier Series Solutions on a Closed Interval. A Nonhomogeneous Problem on a Closed Interval. The Cauchy Problem by Fourier Integral. A Wave Equation in Two Space Dimensions. The Kirchhoff/Poisson Solution. Hadamard's Method of Descent. 5. The Heat Equation. The Cauchy Problem and Initial Conditions. The Weak Maximum Principle. Solutions on Bounded Intervals. The Heat Equation on the Real Line. The Heat Equation on the Half-Line. The Debate Over the Age of the Earth. The Nonhomogeneous Heat Equation. The Heat Equation In Several Space Variables. 6. Dirichlet and Neumann Problems. The Setting of the Problems. Some Harmonic Functions. Representation Theorems. Two Properties of Harmonic Functions. Is the Dirichlet Problem Well-Posed?Dirichlet Problem for a Rectangle. 7. Existence Theorems. A Classical Existence Theorem. A Hilbert Space Approach. Distributions and an Existence Theorem. 8. Additional Topics. Solutions by Eigenfunction Expansions. Numerical Approximations of Solutions. Burger's Equation. The Telegraph Equation. Poisson's Equation. 9. End Materials. Historical Notes. Glossary. Answers to Selected Exercises. 1. First Order Equations. Notation and Terminology. The Linear First Order Equation. The Significance of Characteristics. The Quasi-Linear Equation. 2. Linear Second Order Equations. Classification. The Hyperbolic Canonical Form. The Parabolic Canonical Form. The Elliptic Canonical Form. Some Equations of Mathematical Physics. The Second Order Cauchy Problem. Characteristics and the Cauchy Problem. Characteristics As Carriers of Discontinuities. 3. Elements of Fourier Analysis. Why Fourier Series?The Fourier Series of a Function. Convergence of Fourier Series. Sine and Cosine Expansions. The Fourier Integral. The Fourier Transform. Convolution. Fourier Sine and Cosine Transforms. 4. The Wave Equation. The Cauchy Problem and d'Alembert's Solution.d'Alembert's Solution As a Sum of Waves. The Characteristic Triangle. The Wave Equation on a Half-Line. A Problem on a Half-Line With Moving End. A Nonhomogeneous Problem on the Real Line. A General Problem on a Closed Interval. Fourier Series Solutions on a Closed Interval. A Nonhomogeneous Problem on a Closed Interval. The Cauchy Problem by Fourier Integral. A Wave Equation in Two Space Dimensions. The Kirchhoff/Poisson Solution. Hadamard's Method of Descent. 5. The Heat Equation. The Cauchy Problem and Initial Conditions. The Weak Maximum Principle. Solutions on Bounded Intervals. The Heat Equation on the Real Line. The Heat Equation on the Half-Line. The Debate Over the Age of the Earth. The Nonhomogeneous Heat Equation. The Heat Equation In Several Space Variables. 6. Dirichlet and Neumann Problems. The Setting of the Problems. Some Harmonic Functions. Representation Theorems. Two Properties of Harmonic Functions. Is the Dirichlet Problem Well-Posed?Dirichlet Problem for a Rectangle. 7. Existence Theorems. A Classical Existence Theorem. A Hilbert Space Approach. Distributions and an Existence Theorem. 8. Additional Topics. Solutions by Eigenfunction Expansions. Numerical Approximations of Solutions. Burger's Equation. The Telegraph Equation. Poisson's Equation. 9. End Materials. Historical Notes. Glossary. Answers to Selected Exercises

TOPICAL NAME USED AS SUBJECT

Entry Element
، Differential equations, Partial

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA
377
.
O54
2008

PERSONAL NAME - PRIMARY RESPONSIBILITY

Entry Element
O'Neil, Peter V.
Relator Code
AU

TI

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival