• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Discrete data analysis with R :

پدید آورنده
Michael Friendly, York University, Toronto, Canada, David Meyer, UAS Technikum Wien, Vienna, Austria ; with contributions by Achim Zeileis, University of Innsbruck, Innsbruck, Austria.

موضوع
Mathematics-- Data processing.,R (Computer program language),Datenanalyse,MATHEMATICS / Applied,MATHEMATICS / Probability & Statistics / General,Mathematics-- Data processing.,R,R (Computer program language),Statistik,Visualisierung

رده
QA300
.
F744
2016

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
1498725856
(Number (ISBN
9781498725859
Erroneous ISBN
149872583X
Erroneous ISBN
9781498725835

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Discrete data analysis with R :
General Material Designation
[Book]
Other Title Information
visualization and modeling techniques for categorical and count data /
First Statement of Responsibility
Michael Friendly, York University, Toronto, Canada, David Meyer, UAS Technikum Wien, Vienna, Austria ; with contributions by Achim Zeileis, University of Innsbruck, Innsbruck, Austria.

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
Boca Raton :
Name of Publisher, Distributor, etc.
CRC Press, Taylor & Francis Group,
Date of Publication, Distribution, etc.
2016.

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
1 online resource (xvii, 544 pages ):
Other Physical Details
illustrations (some color.

SERIES

Series Title
Chapman & Hall/CRC texts in statistical science series

GENERAL NOTES

Text of Note
"A Chapman & Hall book."

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references and index.

CONTENTS NOTE

Text of Note
Machine generated contents note: 1.Introduction -- 1.1.Data visualization and categorical data: Overview -- 1.2.What is categorical data? -- 1.2.1.Case form vs. frequency form -- 1.2.2.Frequency data vs. count data -- 1.2.3.Univariate, bivariate, and multivariate data -- 1.2.4.Explanatory vs. response variables -- 1.3.Strategies for categorical data analysis -- 1.3.1.Hypothesis testing approaches -- 1.3.2.Model building approaches -- 1.4.Graphical methods for categorical data -- 1.4.1.Goals and design principles for visual data display -- 1.4.2.Categorical data require different graphical methods -- 1.4.3.Effect ordering and rendering for data display -- 1.4.4.Interactive and dynamic graphics -- 1.4.5.Visualization = Graphing + Fitting + Graphing -- 1.4.6.Data plots, model plots, and data+model plots -- 1.4.7.The 80-20 rule -- 1.5.Chapter summary -- 1.6.Lab exercises -- 2.Working with Categorical Data -- 2.1.Working with R data: vectors, matrices, arrays, and data frames
Text of Note
Note continued: 11.1.3.Goodness-of-fit tests -- 11.1.4.Comparing non-nested models -- 11.2.GLMs for count data -- 11.3.Models for overdispersed count data -- 11.3.1.The quasi-Poisson model -- 11.3.2.The negative-binomial model -- 11.3.3.Visualizing the mean[-]variance relation -- 11.3.4.Testing overdispersion -- 11.3.5.Visualizing goodness-of-fit -- 11.4.Models for excess zero counts -- 11.4.1.Zero-inflated models -- 11.4.2.Hurdle models -- 11.4.3.Visualizing zero counts -- 11.5.Case studies -- 11.5.1.Cod parasites -- 11.5.2.Demand for medical care by the elderly -- 11.6.Diagnostic plots for model checking -- 11.6.1.Diagnostic measures and residuals for GLMs -- 11.6.2.Quantile[-]quantile and half-normal plots -- 11.7.Multivariate response GLM models* -- 11.7.1.Analyzing correlations: HE plots -- 11.7.2.Analyzing associations: Odds ratios and fourfold plots -- 11.8.Chapter summary -- 11.9.Lab exercises.
Text of Note
Note continued: 2.1.1.Vectors -- 2.1.2.Matrices -- 2.1.3.Arrays -- 2.1.4.Data frames -- 2.2.Forms of categorical data: case form, frequency form, and table form -- 2.2.1.Case form -- 2.2.2.Frequency form -- 2.2.3.Table form -- 2.3.Ordered factors and reordered tables -- 2.4.Generating tables: table and xtabs -- 2.4.1.table() -- 2.4.2.xtabs() -- 2.5.Printing tables: structable and ftable -- 2.5.1.Text output -- 2.6.Subsetting data -- 2.6.1.Subsetting tables -- 2.6.2.Subsetting structables -- 2.6.3.Subsetting data frames -- 2.7.Collapsing tables -- 2.7.1.Collapsing over table factors -- 2.7.2.Collapsing table levels -- 2.8.Converting among frequency tables and data frames -- 2.8.1.Table form to frequency form -- 2.8.2.Case form to table form -- 2.8.3.Table form to case form -- 2.8.4.Publishing tables to LATEX or HTML -- 2.9.A complex example: TV viewing data* -- 2.9.1.Creating data frames and arrays -- 2.9.2.Subsetting and collapsing -- 2.10.Lab exercises
Text of Note
Note continued: 3.7.Chapter summary -- 3.8.Lab exercises -- 4.Two-Way Contingency Tables -- 4.1.Introduction -- 4.2.Tests of association for two-way tables -- 4.2.1.Notation and terminology -- 4.2.2.2 by 2 tables: Odds and odds ratios -- 4.2.3.Larger tables: Overall analysis -- 4.2.4.Tests for ordinal variables -- 4.2.5.Sample CMH profiles -- 4.3.Stratified analysis -- 4.3.1.Computing strata-wise statistics -- 4.3.2.Assessing homogeneity of association -- 4.4.Fourfold display for 2 x 2 tables -- 4.4.1.Confidence rings for odds ratio -- 4.4.2.Stratified analysis for 2 x 2 x k tables -- 4.5.Sieve diagrams -- 4.5.1.Two-way tables -- 4.5.2.Larger tables: The strucplot framework -- 4.6.Association plots -- 4.7.Observer agreement -- 4.7.1.Measuring agreement -- 4.7.2.Observer agreement chart -- 4.7.3.Observer bias in agreement -- 4.8.Trilinear plots -- 4.9.Chapter summary -- 4.10.Lab exercises -- 5.Mosaic Displays for n-Way Tables -- 5.1.Introduction -- 5.2.Two-way tables
Text of Note
Note continued: 3.Fitting and Graphing Discrete Distributions -- 3.1.Introduction to discrete distributions -- 3.1.1.Binomial data -- 3.1.2.Poisson data -- 3.1.3.Type-token distributions -- 3.2.Characteristics of discrete distributions -- 3.2.1.The binomial distribution -- 3.2.2.The Poisson distribution -- 3.2.3.The negative binomial distribution -- 3.2.4.The geometric distribution -- 3.2.5.The logarithmic series distribution -- 3.2.6.Power series family -- 3.3.Fitting discrete distributions -- 3.3.1.R tools for discrete distributions -- 3.3.2.Plots of observed and fitted frequencies -- 3.4.Diagnosing discrete distributions: Ord plots -- 3.5.Poissonness plots and generalized distribution plots -- 3.5.1.Features of the Poissonness plot -- 3.5.2.Plot construction -- 3.5.3.The distplot function -- 3.5.4.Plots for other distributions -- 3.6.Fitting discrete distributions as generalized linear models* -- 3.6.1.Covariates, overdispersion, and excess zeros
Text of Note
Note continued: 5.2.1.Shading levels -- 5.2.2.Interpretation and reordering -- 5.3.The strucplot framework -- 5.3.1.Components overview -- 5.3.2.Shading schemes -- 5.4.Three-way and larger tables -- 5.4.1.A primer on loglinear models -- 5.4.2.Fitting models -- 5.5.Model and plot collections -- 5.5.1.Sequential plots and models -- 5.5.2.Causal models -- 5.5.3.Partial association -- 5.6.Mosaic matrices for categorical data -- 5.6.1.Mosaic matrices for pairwise associations -- 5.6.2.Generalized mosaic matrices and pairs plots -- 5.7.3D mosaics -- 5.8.Visualizing the structure of loglinear models -- 5.8.1.Mutual independence -- 5.8.2.Joint independence -- 5.9.Related visualization methods -- 5.9.1.Doubledecker plots -- 5.9.2.Generalized odds ratios* -- 5.10.Chapter summary -- 5.11.Lab exercises -- 6.Correspondence Analysis -- 6.1.Introduction -- 6.2.Simple correspondence analysis -- 6.2.1.Notation and terminology -- 6.2.2.Geometric and statistical properties
Text of Note
Note continued: 6.2.3.R software for correspondence analysis -- 6.2.4.Correspondence analysis and mosaic displays -- 6.3.Multi-way tables: Stacking and other tricks -- 6.3.1.Interactive coding in R -- 6.3.2.Marginal tables and supplementary variables -- 6.4.Multiple correspondence analysis -- 6.4.1.Bivariate MCA -- 6.4.2.The Burt matrix -- 6.4.3.Multivariate MCA -- 6.5.Biplots for contingency tables -- 6.5.1.CA bilinear biplots -- 6.5.2.Biadditive biplots -- 6.6.Chapter summary -- 6.7.Lab exercises -- 7.Logistic Regression Models -- 7.1.Introduction -- 7.2.The logistic regression model -- 7.2.1.Fitting a logistic regression model -- 7.2.2.Model tests for simple logistic regression -- 7.2.3.Plotting a binary response -- 7.2.4.Grouped binomial data -- 7.3.Multiple logistic regression models -- 7.3.1.Conditional plots -- 7.3.2.Full-model plots -- 7.3.3.Effect plots -- 7.4.Case studies -- 7.4.1.Simple models: Group comparisons and effect plots
Text of Note
Note continued: 7.4.2.More complex models: Model selection and visualization -- 7.5.Influence and diagnostic plots -- 7.5.1.Residuals and leverage -- 7.5.2.Influence diagnostics -- 7.5.3.Other diagnostic plots* -- 7.6.Chapter summary -- 7.7.Lab exercises -- 8.Models for Polytomous Responses -- 8.1.Ordinal response -- 8.1.1.Latent variable interpretation -- 8.1.2.Fitting the proportional odds model -- 8.1.3.Testing the proportional odds assumption -- 8.1.4.Graphical assessment of proportional odds -- 8.1.5.Visualizing results for the proportional odds model -- 8.2.Nested dichotomies -- 8.3.Generalized logit model -- 8.4.Chapter summary -- 8.5.Lab exercises -- 9.Loglinear and LogIt Models for Contingency Tables -- 9.1.Introduction -- 9.2.Loglinear models for frequencies -- 9.2.1.Loglinear models as ANOVA models for frequencies -- 9.2.2.Loglinear models for three-way tables -- 9.2.3.Loglinear models as GLMs for frequencies -- 9.3.Fitting and testing loglinear models
Text of Note
Note continued: 9.3.1.Model fitting functions -- 9.3.2.Goodness-of-fit tests -- 9.3.3.Residuals for loglinear models -- 9.3.4.Using loglm() -- 9.3.5.Using glm() -- 9.4.Equivalent logit models -- 9.5.Zero frequencies -- 9.6.Chapter summary -- 9.7.Lab exercises -- 10.Extending Loglinear Models -- 10.1.Models for ordinal variables -- 10.1.1.Loglinear models for ordinal variables -- 10.1.2.Visualizing model structure -- 10.1.3.Log-multiplicative (RC) models -- 10.2.Square tables -- 10.2.1.Quasi-independence, symmetry, quasi-symmetry, and topological models -- 10.2.2.Ordinal square tables -- 10.3.Three-way and higher-dimensional tables -- 10.4.Multivariate responses* -- 10.4.1.Bivariate, binary response models -- 10.4.2.More complex models -- 10.5.Chapter summary -- 10.6.Lab exercises -- 11.Generalized Linear Models for Count Data -- 11.1.Components of generalized linear models -- 11.1.1.Variance functions -- 11.1.2.Hypothesis tests for coefficients
0
0
0
0
0
0
0
0
0

ACQUISITION INFORMATION NOTE

Source for Acquisition/Subscription Address
Ingram Content Group
Stock Number
TANDF_402384

OTHER EDITION IN ANOTHER MEDIUM

International Standard Book Number
149872583X

TOPICAL NAME USED AS SUBJECT

Mathematics-- Data processing.
R (Computer program language)
Datenanalyse
MATHEMATICS / Applied
MATHEMATICS / Probability & Statistics / General
Mathematics-- Data processing.
R
R (Computer program language)
Statistik
Visualisierung

(SUBJECT CATEGORY (Provisional

MAT-- 003000
MAT-- 029000

DEWEY DECIMAL CLASSIFICATION

Number
519
.
50285/5133
Edition
23

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA300
Book number
.
F744
2016

PERSONAL NAME - PRIMARY RESPONSIBILITY

Friendly, Michael.

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Meyer, David,1973-

ORIGINATING SOURCE

Date of Transaction
20200823035826.0
Cataloguing Rules (Descriptive Conventions))
pn

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival