• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History
  • ورود / ثبت نام

عنوان
Advanced numerical and semi analytical methods for differential equations /

پدید آورنده
Snehashish Chakraverty (National Institute of Technology Rourkela, Odisha, India) [and three others].

موضوع
Differential equations-- Numerical solutions.,Differential equations.,MATHEMATICS-- Calculus.,MATHEMATICS-- Mathematical Analysis.

رده
QA372
.
A338
2019e

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
1119423430
(Number (ISBN
1119423449
(Number (ISBN
1119423465
(Number (ISBN
9781119423430
(Number (ISBN
9781119423447
(Number (ISBN
9781119423461
Erroneous ISBN
1119423422
Erroneous ISBN
9781119423423 (hardcover)

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Advanced numerical and semi analytical methods for differential equations /
General Material Designation
[Book]
First Statement of Responsibility
Snehashish Chakraverty (National Institute of Technology Rourkela, Odisha, India) [and three others].

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
Hoboken, NJ :
Name of Publisher, Distributor, etc.
John Wiley & Sons, Inc.,
Date of Publication, Distribution, etc.
2019.

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
1 online resource

GENERAL NOTES

Text of Note
Includes index.

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references and index.

CONTENTS NOTE

Text of Note
Cover; Title Page; Copyright; Contents; Acknowledgments; Preface; Chapter 1 Basic Numerical Methods; 1.1 Introduction; 1.2 Ordinary Differential Equation; 1.3 Euler Method; 1.4 Improved Euler Method; 1.5 Runge-Kutta Methods; 1.5.1 Midpoint Method; 1.5.2 Runge-Kutta Fourth Order; 1.6 Multistep Methods; 1.6.1 Adams-Bashforth Method; 1.6.2 Adams-Moulton Method; 1.7 Higher-Order ODE; References; Chapter 2 Integral Transforms; 2.1 Introduction; 2.2 Laplace Transform; 2.2.1 Solution of Differential Equations Using Laplace Transforms; 2.3 Fourier Transform
Text of Note
2.3.1 Solution of Partial Differential Equations Using Fourier TransformsReferences; Chapter 3 Weighted Residual Methods; 3.1 Introduction; 3.2 Collocation Method; 3.3 Subdomain Method; 3.4 Least-square Method; 3.5 Galerkin Method; 3.6 Comparison of WRMs; References; Chapter 4 Boundary Characteristics Orthogonal Polynomials; 4.1 Introduction; 4.2 Gram-Schmidt Orthogonalization Process; 4.3 Generation of BCOPs; 4.4 Galerkin's Method with BCOPs; 4.5 Rayleigh-Ritz Method with BCOPs; References; Chapter 5 Finite Difference Method; 5.1 Introduction; 5.2 Finite Difference Schemes
Text of Note
5.2.1 Finite Difference Schemes for Ordinary Differential Equations5.2.1.1 Forward Difference Scheme; 5.2.1.2 Backward Difference Scheme; 5.2.1.3 Central Difference Scheme; 5.2.2 Finite Difference Schemes for Partial Differential Equations; 5.3 Explicit and Implicit Finite Difference Schemes; 5.3.1 Explicit Finite Difference Method; 5.3.2 Implicit Finite Difference Method; References; Chapter 6 Finite Element Method; 6.1 Introduction; 6.2 Finite Element Procedure; 6.3 Galerkin Finite Element Method; 6.3.1 Ordinary Differential Equation; 6.3.2 Partial Differential Equation
Text of Note
6.4 Structural Analysis Using FEM6.4.1 Static Analysis; 6.4.2 Dynamic Analysis; References; Chapter 7 Finite Volume Method; 7.1 Introduction; 7.2 Discretization Techniques of FVM; 7.3 General Form of Finite Volume Method; 7.3.1 Solution Process Algorithm; 7.4 One-Dimensional Convection-Diffusion Problem; 7.4.1 Grid Generation; 7.4.2 Solution Procedure of Convection-Diffusion Problem; References; Chapter 8 Boundary Element Method; 8.1 Introduction; 8.2 Boundary Representation and Background Theory of BEM; 8.2.1 Linear Differential Operator; 8.2.2 The Fundamental Solution
Text of Note
8.2.2.1 Heaviside Function8.2.2.2 Dirac Delta Function; 8.2.2.3 Finding the Fundamental Solution; 8.2.3 Green's Function; 8.2.3.1 Green's Integral Formula; 8.3 Derivation of the Boundary Element Method; 8.3.1 BEM Algorithm; References; Chapter 9 Akbari-Ganji's Method; 9.1 Introduction; 9.2 Nonlinear Ordinary Differential Equations; 9.2.1 Preliminaries; 9.2.2 AGM Approach; 9.3 Numerical Examples; 9.3.1 Unforced Nonlinear Differential Equations; 9.3.2 Forced Nonlinear Differential Equation; References; Chapter 10 Exp-Function Method; 10.1 Introduction; 10.2 Basics of Exp-Function Method
0
8
8
8
8

SUMMARY OR ABSTRACT

Text of Note
Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

ACQUISITION INFORMATION NOTE

Source for Acquisition/Subscription Address
Wiley
Stock Number
9781119423430

OTHER EDITION IN ANOTHER MEDIUM

Title
Advanced numerical and semi analytical methods for differential equations
International Standard Book Number
9781119423423

TOPICAL NAME USED AS SUBJECT

Differential equations-- Numerical solutions.
Differential equations.
MATHEMATICS-- Calculus.
MATHEMATICS-- Mathematical Analysis.

(SUBJECT CATEGORY (Provisional

MAT-- 005000
MAT-- 034000

DEWEY DECIMAL CLASSIFICATION

Number
515/
.
35
Edition
23

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA372
Class number
QA372
Book number
.
A338
2019e

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Chakraverty, Snehashish

ORIGINATING SOURCE

Date of Transaction
20200822153812.0
Cataloguing Rules (Descriptive Conventions))
rda

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival