• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Variational methods in mathematical physics :

پدید آورنده
Philippe Blanchard

موضوع

رده
QC174
.
17
.
V35
P455
2012

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
3642826989
(Number (ISBN
9783642826986

NATIONAL BIBLIOGRAPHY NUMBER

Number
b574331

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Variational methods in mathematical physics :
General Material Designation
[Book]
Other Title Information
a unified approach.
First Statement of Responsibility
Philippe Blanchard

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
[Place of publication not identified]
Name of Publisher, Distributor, etc.
Springer
Date of Publication, Distribution, etc.
2012

CONTENTS NOTE

Text of Note
Some Remarks on the History and Objectives of the Calculus of Variations.- 1. Direct Methods of the Calculus of Variations.- 1.1 The Fundamental Theorem of the Calculus of Variations.- 1.2 Applying the Fundamental Theorem in Banach Spaces.- 1.2.1 Sequentially Lower Semicontinuous Functionals.- 1.3 Minimising Special Classes of Functions.- 1.3.1 Quadratic Functionals.- 1.4 Some Remarks on Linear Optimisation.- 1.5 Ritz's Approximation Method.- 2. Differential Calculus in Banach Spaces.- 2.1 General Remarks.- 2.2 The Frechet Derivative.- 2.2.1 Higher Derivatives.- 2.2.2 Some Properties of Frechet Derivatives.- 2.3 The Gateaux Derivative.- 2.4 nth Variation.- 2.5 The Assumptions of the Fundamental Theorem of Variational Calculus.- 2.6 Convexity of f and Monotonicity of f ?.- 3. Extrema of Differentiable Functions.- 3.1 Extrema and Critical Values.- 3.2 Necessary Conditions for an Extremum.- 3.3 Sufficient Conditions for an Extremum.- 4. Constrained Minimisation Problems (Method of Lagrange Multipliers).- 4.1 Geometrical Interpretation of Constrained Minimisation Problems.- 4.2 Ljusternik's Theorems.- 4.3 Necessary and Sufficient Conditions for Extrema Subject to Constraints.- 4.4 A Special Case.- 5. Classical Variational Problems.- 5.1 General Remarks.- 5.2 Hamilton's Principle in Classical Mechanics.- 5.2.1 Systems with One Degree of Freedom.- 5.2.2 Systems with Several Degrees of Freedom.- 5.2.3 An Example from Classical Mechanics.- 5.3 Symmetries and Conservation Laws in Classical Mechanics.- 5.3.1 Hamiltonian Formulation of Classical Mechanics.- 5.3.2 Coordinate Transformations and Integrals of Motion.- 5.4 The Brachystochrone Problem.- 5.5 Systems with Infinitely Many Degrees of Freedom: Field Theory.- 5.5.1 Hamilton's Principle in Local Field Theory.- 5.5.2 Examples of Local Classical Field Theories.- 5.6 Noether's Theorem in Classical Field Theory.- 5.7 The Principle of Symmetric Criticality.- 6. The Variational Approach to Linear Boundary and Eigenvalue Problems.- 6.1 The Spectral Theorem for Compact Self-Adjoint Operators. Courant's Classical Minimax Principle. Projection Theorem.- 6.2 Differential Operators and Forms.- 6.3 The Theorem of Lax-Milgram and Some Generalisations.- 6.4 The Spectrum of Elliptic Differential Operators in a Bounded Domain. Some Problems from Classical Potential Theory.- 6.5 Variational Solution of Parabolic Differential Equations. The Heat Conduction Equation. The Stokes Equations.- 6.5.1 A General Framework for the Variational Solution of Parabolic Problems.- 6.5.2 The Heat Conduction Equation.- 6.5.3 The Stokes Equations in Hydrodynamics.- 7. Nonlinear Elliptic Boundary Value Problems and Monotonic Operators.- 7.1 Forms and Operators - Boundary Value Problems.- 7.2 Surjectivity of Coercive Monotonic Operators. Theorems of Browder and Minty.- 7.3 Nonlinear Elliptic Boundary Value Problems. A Variational Solution.- 8. Nonlinear Elliptic Eigenvalue Problems.- 8.1 Introduction.- 8.2 Determination of the Ground State in Nonlinear Elliptic Eigenvalue Problems.- 8.2.1 Abstract Versions of Some Existence Theorems.- 8.2.2 Determining the Ground State Solution for Nonlinear Elliptic Eigenvalue Problems.- 8.3 Ljusternik-Schnirelman Theory for Compact Manifolds.- 8.3.1 The Topological Basis of the Generalised Minimax Principle.- 8.3.2 The Deformation Theorem.- 8.3.3 The Ljusternik-Schnirelman Category and the Genus of a Set.- 8.3.4 Minimax Characterisation of Critical Values of Ljusternik-Schnirelman.- 8.4 The Existence of Infinitely Many Solutions of Nonlinear Elliptic Eigenvalue Problems.- 8.4.1 Sphere-Like Constraints.- 8.4.2 Galerkin Approximation for Nonlinear Eigenvalue Problems in Separable Banach Spaces.- 8.4.3 The Existence of Infinitely Many Critical Points as Solutions of Abstract Eigenvalue Problems in Separable Banach Spaces.- 8.4.4 The Existence of Infinitely Many Solutions of Nonlinear Eigenvalue Problems.- 9. Semilinear Elliptic Differential Equations. Some Recent Results on Global Solutions.- 9.1 Introduction.- 9.2 Technical Preliminaries.- 9.2.1 Some Function Spaces and Their Properties.- 9.2.2 Some Continuity Results for Niemytski Operators.- 9.2.3 Some Results on Concentration of Function Sequences.- 9.2.4. A One-dimensional Variational Problem.- 9.3 Some Properties of Weak Solutions of Semilinear Elliptic Equations.- 9.3.1 Regularity of Weak Solutions.- 9.3.2 Pohozaev's Identities.- 9.4 Best Constant in Sobolev Inequality.- 9.5 The Local Case with Critical Sobolev Exponent.- 9.6 The Constrained Minimisation Method Under Scale Covariance.- 9.7 Existence of a Minimiser I: Some General Results.- 9.7.1 Symmetries.- 9.7.2. Necessary and Sufficient Conditions.- 9.7.3 The Concentration Condition.- 9.7.4 Minimising Subsets.- 9.7.5 Growth Restrictions on the Potential.- 9.8 Existence of a Minimiser II: Some Examples.- 9.8.1 Some Non-translation-invariant Cases.- 9.8.2 Spherically Symmetric Cases.- 9.8.3 The Translation-invariant Case Without Spherical Symmetry.- 9.9 Nonlinear Field Equations in Two Dimensions.- 9.9.1 Some Properties of Niemytski Operators on Eq.- 9.9.2 Solution of Some Two-Dimensional Vector Field Equations.- 9.10 Conclusion and Comments.- 9.10.1 Conclusion.- 9.10.2 Generalisations.- 9.10.3 Comments.- 9.11 Complementary Remarks.- 10. Thomas-Fermi Theory.- 10.1 General Remarks.- 10.2 Some Results from the Theory of Lp Spaces (1 ? p ? ?).- 10.3 Minimisation of the Thomas-Fermi Energy Functional.- 10.4 Thomas-Fermi Equations and the Minimisation Problem for the TF Functional.- 10.5 Solution of TF Equations for Potentials of the Form

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QC174
.
17
.
V35
Book number
P455
2012

PERSONAL NAME - PRIMARY RESPONSIBILITY

Philippe Blanchard

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Philippe Blanchard

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival