• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Covering codes /

پدید آورنده
Gérard Cohen [and others]

موضوع
Combinatorial packing and covering,code,enveloppe convexe,espace euclidien,géométrie algorithmique,recouvrement

رده
QA166
.
7
.
C68
1997

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
0444825118
(Number (ISBN
9780444825117

NATIONAL BIBLIOGRAPHY NUMBER

Number
dltt

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Covering codes /
General Material Designation
[Book]
First Statement of Responsibility
Gérard Cohen [and others]

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
New York :
Name of Publisher, Distributor, etc.
Elsevier,
Date of Publication, Distribution, etc.
1997

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
xxi, 542 pages :
Other Physical Details
illustrations ;
Dimensions
23 cm

SERIES

Series Title
North-Holland mathematical library ;
Volume Designation
v. 54

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references (pages 495-536) and index

CONTENTS NOTE

Text of Note
Cover -- Contents -- Preface -- List of Symbols -- List of Tables -- Chapter 1. Introduction -- 1.1 Covering problems -- 1.2 Applications -- Chapter 2. Basic facts -- 2.1 Codes -- 2.2 The MacWilliams identities -- 2.3 Krawtchouk polynomials -- 2.4 Hamming spheres -- 2.5 Finite fields -- 2.6 Families of error-correcting codes -- 2.7 Designs, constant weight codes, graphs -- 2.8 Notes -- Chapter 3. Constructions -- 3.1 Puncturing and adding a parity check bit -- 3.2 Direct sum -- 3.3 Piecewise constant codes -- 3.4 Variations on the (u, u + v) construction -- 3.5 Matrix construction -- 3.6 Cascading -- 3.7 Optimal short nonbinary codes -- 3.8 Simulated annealing and local search -- 3.9 Notes -- Chapter 4. Normality -- 4.1 Amalgamated direct sum -- 4.2 Normality of binary linear codes -- 4.3 Abnormal binary nonlinear codes -- 4.4 Normality of binary nonlinear codes -- 4.5 Blockwise direct sum -- 4.6 Notes -- Chapter 5. Linear constructions -- 5.1 Basic facts about linear covering codes -- 5.2 The case R = 1; examples of small codes -- 5.3 Saving more than one coordinate -- 5.4 Davydov's basic construction -- 5.5 Notes -- Chapter 6. Lower bounds -- 6.1 Bounds for the cardinality of the union of K spheres -- 6.2 Balanced codes -- 6.3 Excess bounds for codes with covering radius one -- 6.4 Excess bounds for codes with arbitrary covering radius -- 6.5 The method of linear inequalities -- 6.6 Table on K (n, R) -- 6.7 Lower bounds for nonbinary codes -- 6.8 Notes -- Chapter 7. Lower bounds for linear codes -- 7.1 Excess bounds for linear codes -- 7.2 Linear codes with covering radius two and three -- 7.3 Tables for linear codes -- 7.4 Notes -- Chapter 8. Upper bounds -- 8.1 Codes with given size and distance -- 8.2 Covering radii of subcodes -- 8.3 Covering radius and dual distance -- 8.4 Notes -- Chapter 9. Reed-Muller codes -- 9.1 Definitions and properties -- 9.2 First order Reed-Muller codes -- 9.3 Reed-Muller codes of order 2 and m -- 3 -- 9.4 Covering radius of Reed-Muller codes of arbitrary order -- 9.5 Notes -- Chapter 10. Algebraic codes -- 10.1 BCH codes: definitions and properties -- 10.2 2-and 3-error-correcting BCH codes -- 10.3 Long BCH codes -- 10.4 Normality of BCH codes -- 10.5 Other algebraic codes -- 10.6 Notes -- Chapter 11. Perfect codes -- 11.1 Perfect linear codes over IFq -- 11.2 A nonexistence result -- 11.3 Enumeration of perfect binary codes -- 11.4 Enumeration of perfect codes over Fq -- 11.5 Mixed codes -- 11.6 Generalizations of perfect codes -- 11.7 Notes -- Chapter 12. Asymptotic bounds -- 12.1 Covering radius of unrestricted codes -- 12.2 Greedy algorithm and good coverings -- 12.3 Covering radius of hnear codes -- 12.4 Density of coverings -- 12.5 Coverings of small size -- 12.6 Bounds on the minimum distance -- T$
0

SUMMARY OR ABSTRACT

Text of Note
The problems of constructing covering codes and of estimating their parameters are the main concern of this book. It provides a unified account of the most recent theory of covering codes and shows how a number of mathematical and engineering issues are related to covering problems. Scientists involved in discrete mathematics, combinatorics, computer science, information theory, geometry, algebra or number theory will find the book of particular significance. It is designed both as an introductory textbook for the beginner and as a reference book for the expert mathematician and engineer. A number of unsolved problems suitable for research projects are also discussed

TOPICAL NAME USED AS SUBJECT

Combinatorial packing and covering
code
enveloppe convexe
espace euclidien
géométrie algorithmique
recouvrement

DEWEY DECIMAL CLASSIFICATION

Number
003/
.
54
Edition
21

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA166
.
7
Book number
.
C68
1997

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

Cohen, G., (Gérard),1951-

ORIGINATING SOURCE

Date of Transaction
20160203143933.0

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival